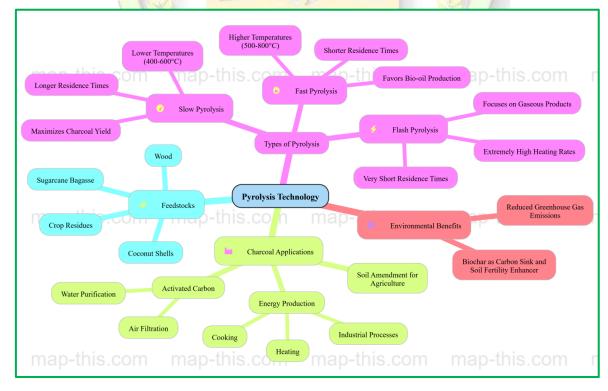


(e-Magazine for Agricultural Articles)

Volume: 05, Issue: 01 (JAN-FEB, 2025) Available online at http://www.agriarticles.com [©]Agri Articles, ISSN: 2582-9882

Pyrolysis Technology for Charcoal Production (*Er. Ravanashree M, Dr. Suresh S and Dr. Malathi D) MIT College of Agriculture and Technology, Musiri, Trichy, Tamil Nadu *Corresponding Author's email: <u>ravanashree.m@mitcat.ac.in</u>

Pyrolysis is an advanced thermal decomposition process used for producing charcoal and other bio-based products from biomass. This technology involves heating organic materials in the absence of oxygen, resulting in the production of solid (charcoal), liquid (bio-oil), and gaseous (syngas) by-products. Pyrolysis is gaining popularity as a sustainable alternative to traditional charcoal-making methods due to its efficiency and minimal environmental impact.


Advantages of Pyrolysis Technology

- Efficiency: Higher conversion efficiency compared to traditional kilns.
- **Product Diversity:** Generates multiple by-products, such as bio-oil and syngas, with economic value.
- Environmental Sustainability: Lowers deforestation rates and minimizes harmful emissions.
- Scalability: Adaptable for small-scale rural use and large industrial setups.

Challenges in Pyrolysis Technology

• High initial investment costs.

- Requirement for skilled labor and technical expertise.
- Limited availability of advanced pyrolysis units in remote regions.
- Disposal and management of liquid by-products (bio-oil).

Agri Articles, 05(01):285-286 (JAN-FEB, 2025)

Comparison of Pyrolysis Types

Parameter	Slow Pyrolysis	Fast Pyrolysis	Flash Pyrolysis
Temperature Range	400–600°C	500–800°C	800–1000°C
Heating Rate	Low	Medium	High
Residence Time	Hours to Days	Seconds to Minutes	Milliseconds
Main Product	Charcoal	Bio-oil	Syngas

Potential Feedstock for Pyrolysis

Feedstock Type	Composition	Charcoal Yield (%)	Other By-products
Wood	High lignin content	30–35%	Bio-oil, syngas
Coconut Shells	Hard shell	25-30%	Activated carbon
Sugarcane Bagasse	Fibrous biomass	15–20%	Syngas, biochar
Rice Husk	High silica content	10–15%	Silica-rich biochar

Economic Analysis of Pyrolysis Systems

Parameter	Traditional Kilns (\$/ton)	Pyrolysis Systems (\$/ton)	Savings/Benefit
Charcoal Production Cost	100–150	70–120	Lower operating cost
Labor Cost	High	Low	Mechanized operation
Environmental Cost	High (deforestation)	Low	Reduced emissions

Environmental Benefits of Pyrolysis

Benefit	Description	Impact
Reduced Deforestation	Uses agricultural residues instead of wood	Saves forest resources
Carbon Sequestration	Biochar stores carbon in soil for decades	Mitigates climate change
Emission Control	Low methane and particulate emissions	Improved air quality

Applications of Pyrolysis Products

Product	Application	Market Value (\$/kg or \$/ton)
Charcoal	Cooking, heating, metal smelting	300–600 per ton
Bio-oil	Fuel, chemical feedstock	400–800 per ton
Syngas	Electricity generation	0.1–0.3 per kWh
Biochar	Soil amendment, carbon sink	200–500 per ton

Conclusion

Pyrolysis is a transformative technology that enhances charcoal production while addressing environmental challenges. By adopting advanced pyrolysis systems, industries and communities can achieve sustainable energy solutions, reduce deforestation, and benefit economically from value-added by-products.

Agri Articles