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limate variability poses a growing threat to agricultural productivity in Asia, 

necessitating innovative breeding strategies for climate-resilient crops. Genomic 

Selection (GS) has revolutionized molecular breeding by leveraging genome-wide markers to 

predict breeding values without identifying specific marker-trait associations. However, 

traditional GS models often fall short in capturing complex genetic architectures and 

Genotype × Environment Interactions (GEI). The integration of Artificial Intelligence (AI), 

including Machine Learning (ML) and Deep Learning (DL), into GS pipelines addresses 

these limitations by modeling non-linear relationships and incorporating diverse data types—

genotypic, phenotypic, and environmental—thus enhancing prediction accuracy for complex 

and low-heritability traits. Real-world applications, such as wheat yield prediction in 

Pakistan, have demonstrated the effectiveness of AI models like Random Forest, CNNs, and 

RNNs in managing high-dimensional and spatiotemporal data. Despite these advancements, 

challenges persist, including poor data quality, limited generalizability, computational 

demands, and ethical issues surrounding data ownership and equity. Addressing these 

challenges requires investments in FAIR data principles, cloud-based infrastructure, inclusive 

policies, and collaborative networks. Future strategies must focus on democratizing access to 

AI tools, integrating socio-economic variables, and scaling innovation to underserved 

regions. Collectively, AI-driven GS offers a transformative path for precision breeding and 

sustainable agriculture amid growing climate and food security challenges. 
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Introduction 
Climate variability is an increasing threat to agricultural productivity in Asia, with delayed 

monsoons and erratic rainfall patterns disrupting crop cycles and yields. Despite the gains of 

the Green Revolution, maintaining yields under climate stress remains a major challenge for 

food security in developing countries. Regional climate shifts are driving declines in rice and 

wheat yields, while extreme events like droughts, floods, and heat stress are reducing 

productivity. For instance, night temperatures above 24°C can reduce rice yield by up to 

52%. Conventional breeding methods such as phenotypic selection (PS) and marker-assisted 

selection (MAS) have been useful but are limited in improving complex traits influenced by 

genotype × environment interactions. Genomic selection (GS) overcomes these limitations by 

using genome-wide marker data to estimate breeding values, enabling selection for both 

major and minor genes. Artificial Intelligence (AI), through machine learning and deep 

learning, enhances GS by analyzing large datasets and capturing complex genotype–

phenotype patterns. AI has improved trait prediction, accelerated gene discovery, and enabled 
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real-time decision-making in precision agriculture. This article explores the convergence of 

AI and genomics as a powerful strategy for developing climate-resilient crops and highlights 

future prospects and integration challenges (Varshney et al., 2012). 

Fundamentals of Genomic Selection 
Genomic Selection (GS) is a transformative molecular breeding strategy that predicts the total 

genetic value of individuals using genome-wide, high-density marker data without the need 

for prior identification of specific marker-trait associations. First proposed by Meuwissen et 

al. (2001), GS represents a major shift from Marker-Assisted Selection (MAS), which targets 

only a few major-effect QTLs. By capturing the combined effects of thousands of markers, 

GS is particularly effective for complex, polygenic traits such as yield, drought tolerance, and 

disease resistance—traits where MAS often falls short. The GS process involves a Training 

Population (TP), which is both genotyped and phenotyped, and a Breeding Population (BP), 

which is genotyped only. Statistical models built from the TP are used to estimate Genomic 

Estimated Breeding Values (GEBVs) for the BP, enabling early selection and reducing 

breeding cycle duration and costs. The accuracy of GEBV prediction depends on several 

factors, including the relatedness between TP and BP, marker density, and the level of 

linkage disequilibrium (LD). Prediction models like GBLUP, RR-BLUP, and Bayesian 

approaches are commonly used, while k-fold cross-validation ensures robustness of these 

models. 

 As breeding data have grown in complexity—due to high-throughput phenotyping 

and environmental variability—modern machine learning (ML) algorithms such as Random 

Forest, SVMs, and ANNs have been integrated into GS to capture non-linear relationships 

and Genotype × Environment Interactions (GEI). These models are particularly useful for 

polygenic traits and for handling missing or high-dimensional data. Unlike MAS, which only 

uses selected markers, GS leverages the entire genome, allowing for more accurate prediction 

and increased selection intensity. This enables breeders to screen more individuals earlier in 

the breeding cycle, accelerating genetic gain. The growing accessibility of genotyping 

platforms and computing infrastructure, along with AI integration, has further enhanced the 

scalability of GS. Advanced tools such as image analysis and decision support systems are 

increasingly linked with GS models, enabling fully automated, precision breeding pipelines. 

Ultimately, GS represents a paradigm shift in plant breeding, offering a robust and scalable 

solution for developing climate-resilient, high-yielding crop varieties. 

Role of Artificial Intelligence in Plant Breeding 
Artificial Intelligence (AI) refers to computer systems capable of performing tasks that 

typically require human intelligence, such as pattern recognition, prediction, and decision-

making. In plant breeding, AI is revolutionizing genomic selection (GS) by enhancing the 

efficiency and precision of breeding processes. Subfields like Machine Learning (ML) and 

Deep Learning (DL) are crucial for managing complex genotypic and phenotypic datasets 

generated through high-throughput platforms. ML algorithms learn from data and improve 

over time, while DL utilizes neural networks to identify intricate, non-linear patterns. AI 

facilitates rapid genotype–phenotype association by analyzing large-scale data, enabling more 

accurate estimation of breeding values. Since the introduction of GS by Meuwissen et al. 

(2001), which used genome-wide markers without requiring specific QTL identification, the 

integration of AI has gained momentum. It addresses urgent global challenges such as climate 

change, resource limitations, and increasing food demand by improving prediction accuracy 

and reducing breeding cycle duration—thus saving time, cost, and boosting genetic gain. 

 AI applications in phenomics, image analysis, and trait prediction have become 

transformative. High-throughput phenotyping (HTP) tools like drones and hyperspectral 

sensors allow dynamic, non-invasive assessment of traits such as biomass and canopy 

structure. Convolutional Neural Networks (CNNs), designed for spatial data analysis, detect 

early signs of stress and disease by automatically extracting features from complex plant 

images. In trait prediction, ML models like Random Forest, SVM, GBM, and XGBoost 
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integrate genomic, phenotypic, and environmental data to accurately predict agronomic traits, 

particularly under genotype × environment interaction (GEI) scenarios and for low-

heritability traits. Deep Learning models such as Recurrent Neural Networks (RNNs) and 

autoencoders manage temporal and high-dimensional data, while Variational Autoencoders 

(VAEs) uncover hidden genetic variation. Different AI models serve specialized roles: RF 

handles complex genetic traits, SVM suits binary classification, ANNs capture non-linear 

polygenic patterns, and DNNs abstract features from large datasets to predict yield and 

disease resistance. These models often outperform traditional statistical approaches like 

GBLUP in scenarios involving GEI and numerous small-effect loci. Collectively, AI enables 

early and precise genotype selection, lowers the need for costly field trials, and significantly 

increases genetic gain—supporting a shift toward predictive, precision breeding essential for 

developing climate-resilient, high-yielding, and resource-efficient crop varieties. 

Integration of Genomic Selection (GS) and Artificial Intelligence (AI) 
Genomic Selection (GS) has emerged as a pivotal strategy in accelerating genetic gain by 

enabling early and accurate selection based on genome-wide markers. However, traditional 

GS models such as GBLUP or Bayesian regressions often fall short in capturing complex 

genetic architectures, including epistasis, dominance, and genotype × environment 

interactions (GEI), which are critical in crop improvement programs. Artificial Intelligence 

(AI), encompassing Machine Learning (ML) and Deep Learning (DL), addresses these 

limitations by offering powerful data-driven tools capable of modeling non-linear 

relationships and integrating diverse data types—including genotype, phenotype, and 

environmental parameters—into the prediction framework. This integration enhances the 

precision of Genomic Estimated Breeding Values (GEBVs), particularly for complex and 

low-heritability traits under variable agro-climatic conditions. Therefore, the fusion of AI and 

GS is transforming plant breeding into a more predictive, scalable, and environment-

responsive science. 

 The integration of AI, particularly ML and DL, into GS significantly enhances the 

accuracy of GEBVs. Advanced ML algorithms—such as Random Forests and Support Vector 

Machines (SVMs)—have demonstrated improved predictive power by efficiently modeling 

non-additive genetic variance and interactions among markers, particularly for traits 

influenced by multiple minor-effect QTLs or environmental variability. Deep Neural 

Networks (DNNs), including Convolutional Neural Networks (CNNs) and Recurrent Neural 

Networks (RNNs), further strengthen predictive frameworks by automatically extracting 

hierarchical patterns from large datasets without manual feature engineering. CNNs excel at 

processing spatial and sequence-based data, while RNNs capture temporal dependencies, 

improving prediction accuracy through better integration of high-throughput phenotyping 

(HTP) and dynamic environmental variables. 

Capturing GEI is essential yet challenging, given the variability in climate, soil, and 

agronomic practices across regions. GEI obscures genotype–phenotype associations, reducing 

selection precision. DL architectures such as CNNs and RNNs are now capable of modeling 

GEI by integrating genomic and environmental datasets. Multi-environment trials (METs), 

combined with envirotyping and high-resolution environmental monitoring, offer robust 

training data for AI models, enhancing their ability to predict genotype performance across 

agro-ecological zones. These innovations support the development of climate-resilient and 

high-performing varieties. 

 By enhancing predictive accuracy, addressing GEI, and enabling real-time integration 

of diverse data, AI-driven GS is reshaping breeding pipelines. Adopting FAIR data practices 

and leveraging open-access collaborations will further enable scalable and sustainable 

breeding strategies. 

Real-World Applications of AI in Crop Improvement 
The integration of Artificial Intelligence (AI) into plant breeding has moved from theory to 

practice, exemplified by wheat yield prediction studies in South Punjab, Pakistan. Machine 
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Learning (ML) and Deep Learning (DL) models enhanced prediction accuracy by combining 

heterogeneous data such as satellite imagery, soil metrics, and agro-climatic variables. 

Among these, Random Forest (RF) demonstrated strong generalization capabilities, while 

Convolutional Neural Networks (CNNs) improved accuracy by 15% through efficient spatial 

pattern recognition from indices like NDVI and EVI. Recurrent Neural Networks (RNNs), 

when applied to temporal data, outperformed CNNs with a 22% lower prediction error, and 

Artificial Neural Networks (ANNs) further reduced error by 2%. In contrast, traditional 

models like LASSO underperformed, highlighting their limitations in managing non-linear, 

high-dimensional data. 

 Despite the promise, several data and implementation challenges persist. Region-

specific datasets limit generalizability, as models trained on Multan data may not perform 

equally well in areas like Sargodha or Sukkur. Data quality, especially in soil databases, and 

the absence of standardized validation protocols raise concerns over model reproducibility. 

Furthermore, manual feature engineering in traditional ML introduces human bias, while 

DL’s computational intensity poses barriers for smallholder deployment. 

 From a policy standpoint, these AI-based models support data-driven agricultural 

planning, early risk mitigation, and climate-resilient interventions. However, to maximize 

their impact, future efforts must integrate socio-economic variables—such as input access, 

credit, and farmer practices—and expand predictive coverage to underrepresented zones. 

Adopting FAIR data principles and dynamic model updating will be essential to improve 

scalability and real-world relevance. Overall, the case study underscores AI’s transformative 

potential in precision breeding and sustainable agriculture when coupled with robust data 

infrastructure and inclusive design Bose et al. (2024). 

Challenges and Limitations 
The implementation of AI in crop breeding faces critical challenges, primarily related to data 

quality, model generalizability, infrastructure, and ethical governance. Agricultural datasets 

are often siloed, inconsistent, and lack standardized phenotyping protocols, reducing the 

efficiency of integrated AI analysis vanEeuwijk et al. (2019). Overfitting remains a concern, 

especially when models trained on localized data fail to generalize across diverse agro-

climatic regions. Multi-environment trials (METs) are crucial in mitigating this by exposing 

AI models to broad environmental variability, thereby improving robustness and reducing 

local noise. 

 Computational limitations further constrain the scalability of AI. Deep learning 

models like CNNs require substantial GPU power, making them less accessible to small-scale 

institutions. Cloud-based tools such as CyVerse and platforms like TensorFlow offer partial 

solutions but require skilled personnel and reliable infrastructure. Ethical and legal issues—

including data ownership, sharing restrictions, and unequal access—hinder collaboration and 

the equitable distribution of AI benefits. Promoting FAIR data principles and transparent 

governance frameworks is essential. 

 Additionally, environmental variability and genotype × environment interactions 

(GEI) complicate trait prediction. Integrating METs and environmental data into AI pipelines 

enhances resilience and accuracy, particularly under climate stress. Addressing these 

challenges is key to developing scalable, inclusive, and sustainable AI-driven breeding 

strategies. 

Future Directions and Recommendations 
To fully harness AI’s potential in agriculture, future strategies must prioritize robust data 

infrastructure, ethical deployment, scalability, and global collaboration. This includes 

adopting FAIR data principles, enhancing transparency, safeguarding data rights, and 

addressing societal concerns like job displacement. AI-powered tools such as high-

throughput phenotyping and speed breeding can accelerate climate-resilient crop 

development. Integrating AI into global breeding networks promotes inclusive, cost-effective 

innovation. Open-source platforms and localized datasets ensure equity across agro-
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ecological contexts. These forward-looking actions will enable AI to drive sustainable 

agricultural transformation while respecting environmental, ethical, and social boundaries . 

Conclusion 
AI is transforming plant breeding by improving trait prediction, addressing GEI, and 

accelerating genetic gain. With investments in FAIR data, ethics, and global collaboration, AI 

can support sustainable, equitable crop improvement amid climate challenges and food 

demands. 


