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or farm-level choices (sowing, irrigation, pesticide application, harvesting) and for 

fostering climate resilience among smallholders, accurate, timely, and hyper-local 

weather information is essential.  Agricultural extension systems can now provide farmers 

with high-resolution, locally calibrated forecasts and microclimate monitoring thanks to 

recent developments in low-cost Internet of Things (IoT) sensor networks and machine-

learning (ML)/deep-learning (DL) forecasting, including data-driven downscaling.  The 

literature on IoT sensor deployments for microclimate measurement, AI techniques for local 

weather prediction and downscaling, and workable integration paths into agrometeorological 

and agricultural extension services is compiled in this study.  We assess technical 

performance evidence, implementation strategies (private, public, and public-private 

partnerships), and the effects on resilience and decision-making.  We identify important 

obstacles, such as sensor coverage and maintenance, data quality and bias, connectivity and 

energy constraints, model interpretability and uncertainty communication, privacy and 

governance, and equity of access for smallholders, as well as important opportunities, such as 

better irrigation scheduling, pest and disease risk alerts, frost/freeze warnings, and optimized 

field operations.  For "IoT+AI" agrometeorological extension, we suggest a design 

framework that prioritizes (i) strong sensor networks and hybrid data fusion (in-situ + remote 

+ crowd); (ii) ML hybridization with physical models for probabilistic forecasts and 

downscaling; (iii) human-centered interfaces and blended extension delivery; and (iv) 

transparent data governance and sustainability pathways.  In order to guarantee that the 

benefits reach underserved agricultural communities and to expedite responsible scaling, we 

conclude with a targeted research and policy agenda. 

Introduction 
When to plant, water, spray, or harvest are just a few of the weather-dependent, time-

sensitive choices that farmers must make.  Particularly in very diverse agricultural settings, 

traditional national or regional predictions sometimes lack the geographical and temporal 

precision necessary to guide these micro-decisions.  The combination of (a) low-cost Internet 

of Things weather sensors that can measure temperature, relative humidity, soil moisture, 

solar radiation, and rainfall at the farm or field level, and (b) AI/ML techniques for statistical 

downscaling and local forecasting opens up new possibilities for localized forecasts that can 

be sent to farmers, agribusinesses, and extension agents via extension channels (SMS, voice, 

and apps).  Better decision relevance and timeliness are promised by this integration, which 

feeds AI predicting models that inform extension advisories with IoT data.  In-situ sensors, 

remote datasets, and ML downscaling have been shown to significantly improve local 

information fidelity in technical evaluations and pilot deployments. However, real-world 

adoption and long-term impact necessitate careful consideration of service design, data 

governance, and inclusion. In order to integrate IoT + AI weather forecasting into agricultural 
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extension services, this paper evaluates the state of the art (technological and 

methodological), synthesizes case studies and assessments, analyzes trade-offs and obstacles, 

and suggests design principles and research objectives. 

Technological building blocks 
IoT sensor networks and microclimate monitoring: Microcontrollers (ESP32, Arduino 

variants) and long-range communication (LoRaWAN, NB-IoT, cellular) connect low-cost 

sensors (temperature, humidity, barometric pressure, rainfall gauges, soil moisture, leaf 

wetness, and solar radiation) to gateways and cloud platforms in contemporary agricultural 

IoT systems.  The autonomy and viability of dispersed deployments have increased because 

to developments in low-power design, energy collection, and edge preprocessing.  According 

to field research and system assessments, dense in-situ sensing allows for locally customized 

alerts by detecting microclimatic variability (such as frost pockets and irrigation microzones) 

that coarse models overlook.  However, there are persistent practical problems with sensor 

calibration, maintenance, and data quality control. 

Data fusion: combining in-situ, remote and reanalysis data: IoT networks are particularly 

useful when combined with radar, reanalysis products (ERA5), and satellite observations 

(soil moisture retrievals, land surface temperature) to provide reliable training datasets for 

machine learning models and to close geographical gaps.  By merging high-frequency local 

observations with more comprehensive geographical context from remote sensing, hybrid 

data fusion techniques enhance forecasting ability.  A number of system topologies have been 

suggested for operationalization, including edge processing → cloud aggregation → model 

serving. 

AI/ML methods for local forecasting and downscaling: Local weather forecasting uses 

artificial intelligence (AI) techniques such as convolutional neural networks (CNNs) for 

spatial representation, sequence models (LSTM), classical machine learning (ML) (random 

forests, gradient boosting), and hybrid models that combine physical model outputs with 

machine learning post-processing (bias correction, statistical downscaling).  For super-

resolution and probabilistic downscaling, recent work employs generative models and deep 

learning architectures (transformers, graph neural networks).  as trained on appropriate 

datasets, machine-learning-based methods may provide high-resolution probabilistic 

predictions with a considerable reduction in computing costs as compared to complete 

dynamical downscaling.  Interpretability and model generalization across climatic regimes 

are still issues. 

Uncertainty quantification and probabilistic forecasts: Because farmers want risk-based 

advice, probabilistic forecasts (such as the likelihood of >10 mm of rain in the next 24 hours) 

are often more helpful for agricultural decision support than deterministic point predictions.  

Quantile regression, ensemble approaches, Bayesian neural networks, and conformal 

prediction are ML techniques for probabilistic forecasting.  A non-trivial design problem that 

is essential to providing suitable decision assistance is effectively communicating forecast 

uncertainty via extension channels. 

Integrating IoT+AI forecasts into extension services: models and pathways 
Delivery modalities and information flows: Depending on the farming environment, 

extension systems may employ a variety of modalities to channel IoT+AI outputs, such as 

community radio, smartphone applications, WhatsApp voice/messages, SMS/IVR alerts for 

feature-phone users, or facilitated village meetings assisted by extension agents.  Raw 

predictions must usually be translated into crop-specific, actionable advice (e.g., “Delay pre-

emergence herbicide application by 2 days due to 70% chance of >15 mm rainfall”) and 

decision criteria that have been co-designed with local advisers in order for integration to be 

effective.  Because extension agents manage contextualization and trust, hybrid "digital + 

human" models often function better than solely digital push ones. 

Institutional models: public, private, PPPs: National meteorological agencies, FAO/WMO 

partnerships, NGOs (such as Climate Field School variations), commercial agritech 
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companies, and public–private partnerships (PPPs) have all been used to provide operational 

agrometeorological services.  PPPs may speed up app development and sensor coverage, but 

governance mechanisms are necessary to prevent conflicts of interest (e.g., input suppliers' 

biased recommendations).  By collaborating with extension services, national agromet 

services are increasingly assisting with last-mile deliveries. 

Co-design and user-centred interfaces: Relevance and adoption are increased by human-

centered design, which involves farmers and extension agents in the co-design of warning 

levels, message wording, language, and delivery methods.  Community agrometeorological 

participatory extension (CAPES) examples, farmer field schools, and participatory pilots 

show greater uptake when advisories are shaped by user preferences and local knowledge. 

Evidence of impacts on farm decisions and outcomes 
• Although there are system assessments and localized effect studies (pilot impacts on 

irrigation, disease risk warnings, and operational efficiency) in the literature, there are 

still very few thorough, randomized impact evaluations for end-to-end IoT+AI forecast 

systems.  Among the main recorded advantages are: 

• Better water conservation and timing of irrigation:  Field tests using localized predictions 

and in-field moisture sensors allow for more precise irrigation scheduling, which lowers 

energy and water use.   

• More effective crop protection timing:  Short-term probabilistic rainfall predictions and 

localized microclimate data help make better judgments about the application of 

pesticides and fungicides, minimizing losses and needless spraying.  

• Decreased post-harvest losses as a result of planned harvest and storage:  Farmers may 

prevent unforeseen wetting occurrences by planning harvest and drying with the use of 

accurate short-range predictions.  Case studies and industrial pilots attest to less harm at 

pilot locations. 

Case studies and operational examples 
National and multilateral programs (WMO, FAO collaborations): WMO and FAO have 

supported last-mile delivery frameworks and national agrometeorological services, including 

strengthening national hydrological and meteorological services' ability to collaborate with 

extension services and provide agricultural advisories.  Current WMO papers provide 

examples of agromet services best practices and institutional routes. 

Research and pilot deployments (AgDataBox, regional projects): Research initiatives 

(such as AgDataBox and experimental IoT installations in management zones) show how 

local downscaling and dense sensor networks may be used to localized advisory and 

irrigation control.  To provide tailored bulletins for farmers and extension workers, these 

projects often integrate sensor networks with cloud computing and machine learning 

algorithms. 

Commercial and NGO initiatives: IoT+AI solutions that target certain hazards (such as pest 

forecasts and frost alerts) have been tested by private and non-governmental entities.  In order 

to preserve advising neutrality, rigorous oversight is required for some agritech companies 

that integrate localized predictions with supply chain services and input retailing.  The 

operational lessons learned from these deployments are documented in reports and case 

papers. 

Operational and technical difficulties 
Sensor maintenance, calibration, and dependability:  Low-cost sensors are susceptible to 

installation mistakes, fouling, and drift.  Data quality quickly deteriorates in the absence of 

rigorous calibration and maintenance strategies, jeopardizing prediction reliability and model 

training.  Supply chains for local technician networks, remote diagnostics, and replacement 

components are necessary for scaling installations.   

Energy and connectivity limitations: Reliable internet or cellphone connectivity is often 

unavailable on remote farms.  Store-and-forward gateways and LPWAN technologies 
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(LoRaWAN, NB-IoT) may help with connection problems, but they come with latency and 

bandwidth trade-offs.  Designing for solar/battery power is crucial for year-round operation.   

Transfer learning and data sparsity: Training data for ML models must be representative; 

additional locations with distinct microclimates or management styles may cause the model 

to perform worse.  Although they need rigorous validation, transfer learning, domain 

adaptation, and physics-informed machine learning may aid in the generalization of models 

across geographical boundaries.  Copernicus.org and cw3e.ucsd.edu 

Trust and interpretability of the model: Farmers and extension personnel may find it 

challenging to trust black-box machine learning predictions.  Uptake is increased by 

combining machine learning (ML) with physical models, delivering probabilistic claims 

(accompanied by examples of realistic actions in various contexts), and supplying 

straightforward visual aids.   

Outlining decision thresholds and ambiguity: Farmers must be able to clearly translate 

probabilistic projections into actions, such as knowing when to postpone irrigation.  User 

testing is crucial, and co-designing thresholds and basic decision rules minimizes 

misunderstandings. 

Data governance, ownership, and privacy: IoT networks gather potentially sensitive 

geographical data at the farm level.  It is essential to have explicit rules about data ownership, 

permission, aggregation, sharing, and monetization.  Transparent data usage agreements and 

farmer protections must be included into PPPs and public agencies.   

Scaling and financial sustainability: It is expensive to deploy, run, and maintain dense 

sensor networks on a large scale.  Subscription services, cooperative co-finance, and sensor 

integration into input supply/value chain contracts are examples of business models.  Broad 

inclusion may initially need governmental funding or subsidies. 

Priority agenda and research gaps 
• Thorough effect evaluations: end-to-end IoT+AI systems need randomized and quasi-

experimental studies that measure resilience, welfare, and behavior change across many 

seasons.  The focus of current research is on short-term decision quality and technical 

performance. 

• Low-maintenance, scalable sensor designs: technological research and development on 

inexpensive, self-calibrating sensors and remote diagnostics to lessen maintenance 

demands.   

• Techniques that generalize across agroecological zones with little local data include 

domain adaptation and transferable machine learning models.  Open challenges and 

benchmark datasets would spur innovation.   

• Best practices for co-designing decision thresholds and communicating probabilistic 

predictions to users with low literacy levels are found in human factors and 

communication research. 

• Economic models for sustainability: a thorough examination of business and subsidy 

models that strike a balance between financial viability and unbiased advice.   

• Data governance frameworks: context-relevant legislative instruments for equitable data 

sharing, consent, and privacy in agritech ecosystems.   

Conclusion  
There is significant technological potential to enhance the timeliness and relevance of 

agrometeorological warnings delivered via extension services by combining IoT sensor 

networks with AI-driven local weather forecasts.  Pilot installations show beneficial gains in 

decision quality (irrigation, pest control, harvest timing), and technological advancements in 

low-cost sensors, LPWAN connectivity, ML downscaling, and hybrid modeling have 

lowered hurdles.  Sensor maintenance, data quality, connection, model generalization, 

transparent uncertainty communication, farm data governance, and sustainable finance are 

some of the non-trivial obstacles to operationalizing these technologies at scale.  Integrating 

strong technology, transparent governance, participatory extension practices, and long-term 
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assessment is necessary for the road to effect.  IoT+AI agrometeorological services have the 

potential to be a key component of climate-resilient extension systems that assist vulnerable 

and diverse smallholder communities if specific investments are made in research, capacity 

development, and institutional collaborations.  
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