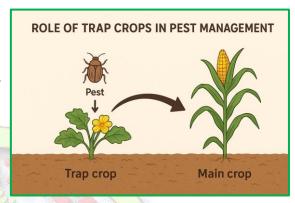


(e-Magazine for Agricultural Articles)

Volume: 05, Issue: 05 (SEP-OCT, 2025)
Available online at http://www.agriarticles.com


**Open Company of the Co

Role of Trap Crops in Pest Management *Krishna Kumar

School of Agricultural and Environmental Sciences, Shobhit University, Meerut [U.P.]

*Corresponding Author's email: krishnakumar64732@gmail.com

Trap cropping is an ecological pest management strategy that involves using plant stands to attract agricultural pests, nematodes, or other organisms away from a high-value cash crop. As a core component of Integrated Pest Management (IPM), this technique leverages pest preference to concentrate populations in a specific area for localized destruction or containment. This article reviews the fundamental principles, various classifications, proven advantages, and

critical success factors of trap cropping, highlighting its significant potential for reducing reliance on broad-spectrum pesticides and enhancing environmental and economic sustainability in agricultural systems.

Introduction

The escalating environmental and health costs associated with conventional pesticide use, coupled with the increasing development of pest resistance, necessitate the adoption of sustainable and ecologically sound pest management strategies. Integrated Pest Management (IPM) offers a framework for combining biological, cultural, physical, and chemical tools to minimize pest damage while maximizing ecological harmony. Within the IPM paradigm, trap cropping stands out as a powerful cultural control method.

A trap crop is a plant species, cultivar, or specific planting time of the main crop that is intentionally placed to be significantly more attractive to a target pest than the primary cash crop. Its function is to divert the pest population, thereby protecting the main crop from devastating damage. This strategy has been a part of agricultural practice for centuries, with modern science now refining the underlying ecological and behavioral principles to optimize its application across diverse agro-ecosystems (Hokkanen, 1991).

Principles and Mechanisms of Trap Cropping

The effectiveness of a trap crop rests on two primary ecological principles: pest preference and habitat manipulation.

A. Pest Preference and Timing

- Virtually all agricultural pests exhibit a distinct preference for certain host plants, specific cultivars, or a particular plant developmental stage. The trap crop exploits this preference by offering a highly appealing alternative.
- Timing is crucial: For the system to work, the trap crop must be available and highly attractive when the target pest is actively immigrating or seeking oviposition sites. Often, this means planting the trap crop earlier than the main crop so it reaches the most attractive stage (e.g., flowering or early vegetative growth) ahead of the cash crop.

Agri Articles ISSN: 2582-9882 Page 614

• Volatile Organic Compounds (VOCs): Many successful trap crops release specific, highly attractive volatile organic compounds (HIPVs - Herbivore-Induced Plant Volatiles) that act as an olfactory signal to the target pest, drawing them away from the main field.

B. Functional Mechanisms

- Once pests are concentrated on the trap crop, management focuses on preventing their dispersal back to the main crop.
- Concentration and Destruction: The most common approach. Pests are concentrated on the trap crop, allowing for their localized control through targeted, minimal insecticide application, mechanical destruction (e.g., cutting or tilling under the trap crop), or mass trapping (e.g., pheromone traps placed within the trap crop).
- Dead-End Trap Cropping: This involves using a plant that is highly attractive for pest oviposition but on which the pest's offspring (larvae) cannot successfully develop or survive. This acts as an ecological "sink," reducing the pest population for the next generation. (Example: Yellow rocket for the diamondback moth).
- Conservation Biological Control: The trap crop is used not only to attract pests but also to attract and conserve natural enemies (predators and parasitoids) of the pest. The concentrated pest population on the trap crop provides an immediate food source, allowing the beneficial organisms to build up their numbers before migrating to the main crop for widespread pest suppression.

Advantages and Limitations of the Strategy

- Trap cropping provides substantial benefits across economic, environmental, and ecological dimensions:
- Pesticide Reduction: Significantly reduces or eliminates the need for insecticide application on the high-value main crop, often limiting application to only the small trap crop area.
- Economic Savings: Lowers pesticide costs, reduces application labor, and increases the final marketable yield by minimizing crop damage.
- Environmental Safety: Preserves beneficial non-target organisms (e.g., pollinators and natural enemies) within the majority of the field, promoting natural control.
- Soil and Crop Health: Can be integrated with other beneficial practices like cover cropping, and in some cases, the trap crop itself may serve a dual purpose (e.g., a marketable commodity or a source of green manure).

Limitations and Challenges

- Despite its promise, implementing trap cropping successfully requires careful planning:
- Pest Dispersal Risk: If the pests are not managed (destroyed or contained) on the trap crop, they can multiply and disperse into the main crop, potentially causing greater damage than if the trap crop had never been planted.
- Specificity: The system is typically effective against one or a few target pests and may not address a complex pest community.
- Labor and Cost: Requires accurate identification of the pest and its behavioral preferences, precise planting and management timing, and the cost of seeds and land use for the trap crop.
- Mobility: It works best for pests of intermediate mobility (like beetles and caterpillars) and is less effective for highly mobile or passively dispersed pests (like some aphids or strong-flying moths).

Conclusion

Trap cropping is a time-tested, biologically sound, and environmentally responsible pest management strategy. Its role in modern agriculture is pivotal, serving as a model for how ecological understanding can be translated into practical, cost-effective field solutions. For a successful system, a thorough understanding of the pest's ecology, host plant preference, and

Agri Articles ISSN: 2582-9882 Page 615

the correct spatial and temporal deployment of the trap crop is essential. As research continues to refine "dead-end" varieties, volatile-based attractions, and its integration with biological control, trap cropping is poised to become an even more indispensable component of sustainable, resilient, and pesticide-reduced agricultural systems globally.

References

- 1. Hokkanen, H. M. T. (1991). Trap cropping in pest management. Annual Review of Entomology, 36(1), 119-138.
- 2. Shelton, A. M., & Badenes-Perez, F. R. (2006). Concepts and applications of trap cropping in pest management. Annual Review of Entomology, 51, 285-308.
- 3. Khan, Z. R., Hassanali, A., Overholt, W. A., Wadhams, L. J., Lubega, F., & Pickett, J. A. (1997). Intercropping increases cotton yields in East Africa. Crop Protection, 16(1), 17-23. (General IPM context/Push-Pull)
- 4. Srinivasan, R., & Moorthy, M. (2004). Management of diamondback moth using trap cropping in cabbage. Journal of Applied Entomology, 128(1), 10-15.

Agri Articles ISSN: 2582-9882 Page 616