

# Agri Articles

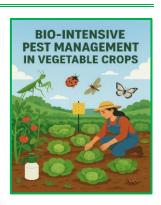
(e-Magazine for Agricultural Articles)

Volume: 05, Issue: 05 (SEP-OCT, 2025)
Available online at http://www.agriarticles.com

Output

Output

Description:
Output


Description

# **Bio-Intensive Pest Management in Vegetable Crops**

<sup>®</sup>Mohammad Hasnain Raza

School of Agriculture and Environmental Sciences, Shobhit University, Meerut [U.P.] \*Corresponding Author's email: <a href="mailto:hasnainraza6268@gmail.com">hasnainraza6268@gmail.com</a>

Bio-intensive Pest Management (BIPM) is an advanced and sustainable approach to managing pests that integrates ecological principles with biological control methods. It focuses on the understanding of pest ecology, enhancement of natural enemies, and the use of environmentally safe methods to maintain pest populations below economic threshold levels. In vegetable crops, where pest infestation is frequent and diverse, BIPM provides a holistic, cost-effective, and eco-friendly solution compared to chemical-based pest management systems. This article discusses the principles, components, strategies, and benefits of BIPM in vegetable crops.



#### Introduction

Vegetable crops play a crucial role in human nutrition, income generation, and agricultural diversification. However, they are highly vulnerable to a variety of insect pests, nematodes, and diseases due to their tender foliage, continuous cropping, and intensive management. Traditional pest management practices heavily rely on synthetic pesticides, which cause numerous problems such as pest resistance, resurgence, residue toxicity, and ecological imbalance. To overcome these challenges, Bio-intensive Pest Management (BIPM) has emerged as an ecologically based strategy that minimizes chemical pesticide use while enhancing biodiversity and ecological stability. BIPM integrates various compatible pest management practices—biological control, cultural manipulation, mechanical control, host plant resistance, and need-based chemical applications—guided by ecological principles.

## Concept

Bio-intensive Pest Management (BIPM) is a scientifically advanced and eco-ecological approach to crop protection that emphasizes preventive, ecological, and biological methods over chemical control. The foundation of BIPM lies in understanding the ecology of pests and their natural enemies within the farming ecosystem. Instead of completely eradicating pests, the goal is to manage their population below economic injury levels (EIL) by utilizing a combination of cultural, mechanical, biological, and botanical methods.

BIPM represents a shift from reactive to proactive pest management, focusing on designing a balanced agro-ecosystem that inherently suppresses pest outbreaks. It integrates knowledge of pest life cycles, natural enemy behavior, and crop management techniques to achieve sustainable control.

## Philosophy of BIPM

The philosophy behind BIPM is "prevention, observation, and intervention." It encourages farmers to:

- 1. **Prevent** pest establishment by adopting healthy crop production practices.
- 2. **Observe** pest dynamics through regular field monitoring.

3. **Intervene** only when necessary and with eco-friendly methods.

## **Ecological Foundation**

Pest outbreaks occur primarily due to ecological imbalances such as monocropping, overuse of pesticides, or excessive fertilization. BIPM aims to restore natural balance through biodiversity enhancement, resource recycling, and minimal external chemical input. By creating favorable conditions for natural control agents, BIPM strengthens the self-regulating capacity of the agro-ecosystem.

## **Principles of Bio-Intensive Pest Management**

- 1. **Understanding Agro-Ecosystem Interactions:** A BIPM system relies on understanding how climate, crop varieties, pests, and natural enemies interact in an ecosystem. This knowledge forms the basis for making rational pest management decisions.
- 2. **Prevention over Eradication:** Preventive approaches such as crop rotation, use of healthy seeds, and habitat management reduce pest pressure long before they become damaging.
- 3. **Conservation and Enhancement of Natural Enemies:** Predators, parasitoids, and microbial pathogens naturally keep pest populations in check. Conservation of these beneficial organisms is a key goal of BIPM.
- 4. **Ecological Engineering for Pest Suppression:** Designing the cropping system with trap crops, flowering borders, and refuges for beneficial insects maintains ecological equilibrium.
- 5. **Use of Resistant and Tolerant Varieties:** Crop varieties that can withstand pest attack are used to minimize crop losses and reduce pesticide dependency.
- 6. Monitoring and Decision-Making Based on ETL (Economic Threshold Level): Regular pest surveillance helps in deciding when to take control measures, avoiding unnecessary pesticide use.
- 7. **Integration of Multiple Methods:** BIPM is a holistic system combining cultural, mechanical, biological, and botanical control methods in a compatible manner.
- 8. **Selective and Safe Chemical Use:** Chemicals are considered the last resort, used only when pest populations exceed ETL, and selected for minimal impact on non-target organisms.

## **Major Components of Bio-Intensive Pest Management**

BIPM comprises several compatible and complementary components that work together to create a sustainable pest management system. Each component contributes to reducing pest pressure while maintaining ecological balance.

#### 1. Cultural Control

Cultural control forms the first line of defense in BIPM and involves altering agricultural practices to make the environment less favorable for pests.

#### **Key Practices:**

- **Crop Rotation:** Avoiding continuous cultivation of the same or related crops helps break pest and disease life cycles. For example, rotating solanaceous crops (like tomato, brinjal, and chilli) with leguminous or cereal crops prevents buildup of specific insect pests and nematodes.
- **Intercropping and Mixed Cropping:** Growing multiple crops together confuses pests and reduces their ability to locate preferred hosts. For instance, intercropping cabbage with mustard attracts diamondback moth away from the main crop.
- **Field Sanitation:** Regular removal of infested plant parts, crop residues, and weeds eliminates pest breeding sites.
- Adjustment of Planting and Harvesting Dates: Sowing crops during periods of low pest activity avoids peak infestation seasons.
- Use of Trap Crops: Crops like marigold can attract pests such as *Helicoverpa armigera* away from tomato or chilli fields. Trap crops act as "sacrificial plants."

• **Soil and Water Management:** Proper irrigation and soil health maintenance enhance crop vigor, making plants less susceptible to pests.

### 2. Mechanical and Physical Control

Mechanical and physical controls provide direct and immediate suppression of pests through manual or mechanical means.

#### **Examples:**

- **Hand Picking and Destruction:** Removing caterpillars, egg masses, and infested shoots helps control early infestations in crops like brinjal.
- Traps:
- *Pheromone traps* attract male moths of *Helicoverpa*, *Spodoptera*, etc., thereby reducing mating success.
- Light traps attract nocturnal pests.
- Sticky traps (yellow or blue) are effective for aphids, thrips, and whiteflies.
- **Barriers and Netting:** Fine mesh nets prevent entry of flying pests like fruit borers and leaf miners.
- **Mulching and Reflective Sheets:** Reflective mulches repel aphids and whiteflies by disorienting them.
- **Solarization:** Covering soil with transparent plastic during summer destroys soil-borne pest stages and pathogens.

#### 3. Biological Control

Biological control is the core pillar of BIPM. It utilizes living organisms such as predators, parasitoids, and pathogens to control pest populations.

#### **Types of Biological Control:**

#### 1. Conservation:

Protecting existing natural enemies by minimizing pesticide use.

#### 2. Augmentation:

Releasing laboratory-reared beneficial organisms to increase their numbers in the field (e.g., *Trichogramma chilonis* for egg parasitoid control).

3. **Inundative or Inoculative Release:** Releasing high numbers of beneficial organisms periodically for quick pest suppression.

**Examples of Bioagents** 

| Type                      | Bioagent                                      | Target Pest                                |
|---------------------------|-----------------------------------------------|--------------------------------------------|
| Predator                  | Chrysoperla carnea                            | Aphids, whiteflies                         |
| Predator                  | Coccinella septempunctata (Ladybird beetle)   | Aphids, mealybugs                          |
| Parasitoid                | Trichogramma chilonis, T.<br>pretiosum        | Eggs of <i>Helicoverpa</i> ,<br>Spodoptera |
| Entomopathogenic<br>Fungi | Beauveria bassiana, Metarhizium<br>anisopliae | Caterpillars, beetles                      |
| Bacterium                 | Bacillus thuringiensis (Bt)                   | Lepidopteran larvae                        |
| Virus                     | NPV (Nuclear Polyhedrosis Virus)              | Helicoverpa, Spodoptera                    |

Biological control agents are environment-friendly, non-toxic to humans, and provide long-term suppression of pests.

#### 4. Botanical Pesticides

Plant-based pesticides are natural, biodegradable, and safe for beneficial organisms.

#### **Common Botanicals Used in BIPM:**

- Neem (*Azadirachta indica*): Contains azadirachtin which acts as an insect growth regulator, repellent, and antifeedant.
- **Pyrethrum** (*Chrysanthemum cinerariaefolium*): Used for quick knockdown control of soft-bodied pests.
- Garlic, Chilli, and Tobacco Extracts: Act as natural repellents and insecticides.
- Custard Apple Seed Extract: Effective against caterpillars and beetles.

Regular rotation of different botanical formulations prevents pest resistance and enhances field biodiversity.

#### 5. Host Plant Resistance

Development and use of pest-resistant crop varieties reduce dependency on external pest control measures.

#### **Examples:**

- **Tomato:** Varieties resistant to *Helicoverpa armigera* and whiteflies.
- Cabbage: Resistant varieties against diamondback moth.
- **Okra:** Resistant to jassids and shoot borers.

Host plant resistance forms a cost-effective, permanent, and farmer-friendly solution in BIPM programs.

#### 6. Ecological Engineering

Ecological engineering involves designing cropping systems to manipulate the habitat in favor of natural enemies.

#### **Strategies:**

- Planting flowering plants like sunflower, coriander, and marigold along field borders.
- Growing nectar-producing plants to attract parasitoids.
- Maintaining refugia for beneficial insects during non-cropping periods.
- Avoiding broad-spectrum insecticides to safeguard biodiversity.

#### 7. Need-based Chemical Control

When pest populations exceed the Economic Threshold Level, selective and eco-friendly pesticides are used as a last resort.

#### **Guidelines:**

- Use of bio-rational insecticides like *Spinosad*, *Emamectin benzoate*, or neem formulations.
- Avoid repeated use of the same chemical group to prevent resistance.
- Apply during early morning or evening to protect pollinators.
- Maintain **safe pre-harvest intervals** in vegetables.

# Implementation of BIPM in Vegetable Crops

- > Tomato
- Major Pests: Fruit borer (*Helicoverpa armigera*), Whiteflies, Leaf miner.
- **BIPM Practices:**
- ✓ Install pheromone traps (5/acre) for monitoring and mass trapping.
- ✓ Raise marigold as a trap crop in 1:16 ratio.
- ✓ Release *Trichogramma chilonis* (50,000/acre/week).
- ✓ Spray *Bacillus thuringiensis* (Bt) and neem seed kernel extract (5%).
- ✓ Use bird perches to encourage natural predation.
- > Cabbage/Cauliflower
- Major Pests: Diamondback moth (*Plutella xylostella*), Aphids.
- Practices:
- ✓ Use mustard as a trap crop (20 rows of cabbage: 1 row mustard).
- ✓ Install yellow sticky traps (10/acre).
- ✓ Apply Bt formulations and neem oil sprays alternately.
- ✓ Encourage parasitoid *Cotesia plutellae* populations.
- Okra
- Major Pests: Jassids, Whiteflies, Fruit borer.
- Practices:
- ✓ Spray neem oil (3%) and NSKE (5%) alternately.
- ✓ Install yellow sticky traps.
- ✓ Release *Chrysoperla carnea* larvae (5,000/acre).
- > Brinjal (Eggplant)
- Major Pests: Shoot and fruit borer (Leucinodes orbonalis), Aphids, Whiteflies.
- Practices:

- ✓ Collect and destroy infested shoots.
- ✓ Install pheromone traps (5/acre).
- ✓ Use neem-based formulations (Azadirachtin 1%).
- ✓ Release *Trichogramma pretiosum* weekly.
- > Chilli
- Major Pests: Thrips, Mites, Fruit borer.
- Practices:
- ✓ Spray neem oil (2%) and garlic extract.
- ✓ Intercrop with marigold.
- ✓ Apply *Beauveria bassiana* against thrips.

## **Advantages of Bio-Intensive Pest Management**

- 1. **Environmental Protection:** BIPM minimizes chemical usage, preventing soil, air, and water pollution.
- 2. **Biodiversity Conservation:** Encourages the survival of beneficial organisms—predators, parasitoids, and pollinators.
- 3. **Resistance Management:** Reduces selection pressure on pests, delaying pesticide resistance.
- 4. Food Safety: Produces vegetables with minimal pesticide residues, safe for consumers.
- 5. **Economic Benefits:** Lower pesticide expenditure and improved crop quality enhance profitability.
- 6. **Soil Health Improvement:** Organic inputs and microbial activity enrich soil fertility and structure.
- 7. **Long-term Sustainability:** Restores natural ecological balance, ensuring sustainable pest regulation.
- 8. **Compatibility with Organic Farming:** BIPM complements organic systems, making it ideal for eco-certification and export markets.

## **Challenges in Adoption**

Despite its potential, BIPM faces several practical constraints:

- 1. Lack of Farmer Awareness: Many farmers lack training in pest monitoring, bioagent use, and ecological approaches.
- 2. **Limited Availability of Bio-inputs:** Quality bio-pesticides and bioagents are not always accessible in rural markets.
- 3. **Delayed Results:** BIPM methods act gradually compared to quick results from chemical pesticides.
- 4. **Knowledge-Intensive System:** Requires understanding of pest life cycles, ETL, and timing of interventions.
- 5. **Storage and Handling Issues:** Bio-pesticides often have shorter shelf life and require careful storage.
- 6. **Policy and Market Gaps:** Weak regulation of bio-input quality and inadequate government incentives.

#### **Conclusion**

Bio-intensive Pest Management represents a transformative step toward sustainable and ecofriendly vegetable cultivation. It harmonizes pest control with the natural ecosystem by integrating multiple techniques—biological control, ecological engineering, host resistance, and need-based intervention. BIPM not only ensures high-quality, residue-free produce but also protects the health of farmers and the environment. To ensure wide adoption, farmer training, demonstration programs, and policy support are essential. The future of sustainable vegetable production lies in promoting bio-intensive, knowledge-driven, and ecologically sound pest management systems.

#### References

1. Dent, D. (2000). Insect Pest Management. CABI Publishing, UK.

- 2. Dhaliwal, G. S., Koul, O., & Arora, R. (2010). *Principles of Insect Pest Management*. Kalyani Publishers, New Delhi.
- 3. Koul, O., & Dhaliwal, G.S. (2011). *Microbial Biopesticides and Insect Pest Management*. Springer.
- 4. Pedigo, L.P., & Rice, M.E. (2014). *Entomology and Pest Management*, 6th Edition. Pearson Education.
- 5. NIPHM (2023). Bio-intensive Pest Management Module for Vegetable Crops. Government of India.
- 6. FAO (2022). Integrated Pest Management and Ecological Intensification in Vegetables.
- 7. National Centre for Integrated Pest Management (NCIPM), ICAR, New Delhi.
- 8. Pimentel, D. (2005). *Environmental and Economic Costs of Pesticide Use*. Bio-Science, 55(7): 593–600.