

Hgri Articles

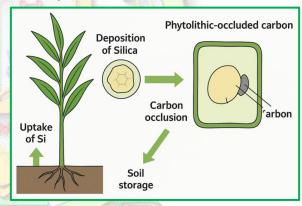
(e-Magazine for Agricultural Articles)

Volume: 05, Issue: 06 (NOV-DEC, 2025) Available online at http://www.agriarticles.com Agri Articles, ISSN: 2582-9882

Phytolithic-Occluded Carbon: The Secret Carbon Vault in Plants

Sushma M. Awaji, Prashantkumar. S. Hanjagi and A. K. Singh

ICAR-National Institute of Abiotic Stress Management, Baramati, Maharashtra, India *Corresponding Author's email: sma1624@gmail.com


X Then we think about plants capturing carbon, we typically picture leaves full of chlorophyll using sunlight to turn CO2 into sugar. But there's a lesser-known mechanism hiding inside plant tissues: phytolithic carbon, or carbon occluded within tiny silica bodies called phytoliths. Though small, this process has fascinating implications for plant biology, soil science, and long-term carbon sequestration in ecosystems.

Formation and Nature of Phytoliths

In many plants—especially grasses, bamboos, cereals, and certain wetland species—silicon (absorbed from the soil as soluble silicic acid) is deposited within cells in the form of silica (SiO₂). These deposits form microscopic, glass-like structures known as phytoliths, literally "plant stones." As plant tissues die and decompose, the surrounding organic matter decays, but the silica phytoliths remain intact and accumulate in soils and sediments, acting as longterm biological fingerprints of the plants that formed them

Origin and Nature of Phytolithic Carbon (PhytOC)

While phytoliths are composed mainly of silica, small amounts of organic carbon become trapped inside the silica matrix during phytolith formation in living plants. This carbon, known as phytolith-occluded carbon (PhytOC), represents a special and durable storage. form of carbon The encapsulation makes PhytOC highly resistant to microbial decomposition, meaning the carbon remains "locked away" for centuries or even millennia after the plant's death. In this way, phytoliths act as tiny carbon vaults Fig 1: Formation of Phytolithic Carbon (PhytOC) within the plant biomass. (Fig 1).

inside the plant cells

Role of PhytOC in Long-Term Carbon Sequestration

PhytOC has gained attention because it represents a stable and long-lasting carbon sink in terrestrial ecosystems. Its key advantages include:

- Longevity PhytOC persists in soils over geological timescales due to its physical protection within silica.
- **Durability** The encapsulation reduces the likelihood of rapid microbial oxidation.
- **Agricultural potential** High-silicon crops such as rice, sugarcane, bamboo, and millets produce more phytoliths and hence store more PhytOC.

Some studies estimate that phytolith carbon sequestration could reach up to 0.025 t CO₂ per hectare annually in certain grasslands and bamboo systems. Although small compared to biomass carbon pools, its persistence makes it valuable for long-term storage.

Agri Articles ISSN: 2582-9882 Page 40

Factors Influencing PhytOC Production

Several biological and environmental factors control how much phytolith-occluded carbon a plant can produce:

- Silicon uptake Plants with higher silicon absorption deposit more silica and, consequently, form more phytoliths.
- Plant species and organs Grasses, sedges, and bamboo accumulate high amounts; leaves and roots may differ in silica content.
- **Growth environment** Soil silicon availability, water status, and productivity strongly affect phytolith formation.
- **Decomposition dynamics** The rate at which plant tissues break down determines how much PhytOC is transferred and preserved in soil.

Current Challenges and Knowledge Gaps

Despite its promise, several questions remain about the true role of PhytOC in the global carbon cycle:

- **Source ambiguity** Some isotopic studies indicate that the carbon trapped in phytoliths may not always originate from recent photosynthesis but could include older, soil-derived carbon.
- Magnitude uncertainty The total contribution of PhytOC to global soil carbon stocks is still debated and likely smaller than other carbon pools.
- **Mechanistic understanding** How carbon becomes occluded and how stable it remains over time require further molecular-level studies.

Practical use – While increasing PhytOC production is conceptually appealing, selecting crops and managing soils to optimize this process presents agronomic challenges.

Importance of PhytOC in Sustainable Land and Climate Management

Recognizing phytolith-occluded carbon adds a new dimension to our understanding of carbon cycling. PhytOC contributes to:

- Long-term carbon storage independent of organic matter turnover.
- **Improved soil resilience**, since phytoliths can enhance soil aggregation and structure.
- **Potential climate mitigation**, especially when integrated into silicon-rich cropping systems such as rice paddies and bamboo plantations.

Conclusion

Phytolithic-occluded carbon represents a small but remarkably stable component of the global carbon cycle. These tiny silica bodies serve as natural carbon vaults, capturing and preserving a fraction of atmospheric CO₂ fixed during photosynthesis. As research advances, ecosystems rich in silicon-accumulating plants such as bamboo forests, grasslands, and cereal crops may gain renewed importance not only for their productivity but also for their hidden contribution to long-term carbon sequestration.

References

- 1. Parr, J. F., & Sullivan, L. A. (2005). Soil carbon sequestration in phytoliths. Soil Biology and Biochemistry, 37(1), 117–124.
- 2. Song, Z., Liu, H., Si, Y., & Yin, Y. (2012). The production of phytolith-occluded carbon in China's croplands: Implications to biogeochemical carbon sequestration. Global Change Biology, 18(2), 364–375.
- 3. Hodson, M. J., White, P. J., Mead, A., & Broadley, M. R. (2005). Phylogenetic variation in the silicon composition of plants. Annals of Botany, 96(6), 1027–1046.
- 4. Alexandre, A., Meunier, J. D., Colin, F., & Koud, J. M. (1997). Plant impact on the biogeochemical cycle of silicon and related weathering processes. Geochimica et Cosmochimica Acta, 61(3), 677–682.
- 5. Piperno, D. R. (2006). Phytoliths: A Comprehensive Guide for Archaeologists and Paleoecologists. AltaMira Press, Lanham, MD.

Agri Articles ISSN: 2582-9882

- 6. Parr, J. F., & Sullivan, L. A. (2011). Phytolith carbon and its role in carbon sequestration in terrestrial environments. *Earth-Science Reviews*, 104(1–3), 1–13.
- 7. Li, Z., Song, Z., Parr, J. F., & Wang, H. (2013). Occluded carbon in rice phytoliths: Implications for carbon sequestration in rice paddies. *Plant and Soil*, 370(1–2), 615–623.
- 8. Ma, J. F., & Yamaji, N. (2006). Silicon uptake and accumulation in higher plants. *Trends in Plant Science*, 11(8), 392–397.
- 9. Song, Z., Wang, H., Strong, P. J., & Guo, F. (2014). Phytolith carbon sequestration in China's croplands. *Nature Communications*, 5, 4966.
- 10. Santos, R. V., Alexandre, A., & Meunier, J. D. (2018). Silicon, phytoliths and the carbon cycle: Current knowledge and future perspectives. *Environmental Reviews*, 26(3), 265–276.

Agri Articles ISSN: 2582-9882 Page 42