

Agri Articles

(e-Magazine for Agricultural Articles)

Climate-Smart Agriculture: Farming Under a Changing Sky

*B Bhanukiran Reddy¹, Surya Teja Varanasi¹ and Boddu Archana²
¹Department of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural

University, Coimbatore -641003

²Ph.D scholar, Department of Agronomy, College of Agriculture, Vellayani-695522

*Corresponding Author's email: <u>r7416474928@gmail.com</u>

Climate-smart agriculture (CSA) is a holistic approach that integrates agricultural productivity, resilience and mitigation of greenhouse gases to address the profound impacts of global climate change on food production systems. By combining new technologies, traditional knowledge and policy support, CSA empowers farmers to adapt, prosper and safeguard both livelihoods and the environment. This article systematically reviews the science, technologies, policies and global case studies that shape CSA as a future-ready agricultural paradigm.

Keywords: Climate-smart agriculture, resilience, adaptation, greenhouse gas mitigation, drought, policy, sustainable farming.

Introduction

Agriculture, the backbone of food security worldwide, faces unprecedented challenges from changing climatic conditions - erratic rainfall, rising temperatures, droughts and increased frequencies of extreme events. Model projections estimate up to 20-30% decline in crop yields in vulnerable regions by 2050 without transformative adaptation. Climate-smart agriculture (CSA) was developed by the FAO and CGIAR to address these threats, prioritizing three pillars: increased productivity, enhanced resilience and reduced emissions. Notable authors such as Harvey *et al.* (2014), Khatri-Chhetri *et al.* (2017) and Neufeldt *et al.* (2011) frame CSA as an integrated response to food insecurity and climate risk, blending technical innovation and agroecological practices.

Core Practices and Technologies of CSA

CSA is not a single recipe but a toolbox of locally-adapted strategies that bridge agronomy, ecology and social organization. Major technological and management practices include:

- Resource-Efficient Crops: Adoption of drought-tolerant, heat-resistant and flood-resilient varieties increases food security under new climate regimes.
- > **Precision Irrigation:** Technologies such as solar-powered drip and sensor-based irrigation maximize water-use efficiency and support adaptation in water-scarce regions.
- > Integrated Soil Management: Use of organic amendments, conservation tillage and crop rotations build healthy soils capable of storing more carbon and retaining moisture.
- > Climate Forecasting and Information Services: Weather apps, ICT tools and farmer field schools empower decision-making and risk management.
- > **Insurance Schemes:** Innovative risk transfers such as index-based crop insurance provides financial flexibility for smallholders facing shocks.

 \downarrow

Agri Articles ISSN: 2582-9882 Page 224

Table 1: Climate-Smart Agriculture Technologies and Benefits

Technology	Adaptation Benefit	Mitigation Impact
Drought-tolerant crops	Higher yields in dry years	Moderate
Solar-powered drip irrigation	Water savings (up to 50%)	Lower energy emissions
Conservation tillage	Soil moisture retention	Increased soil carbon
Crop insurance	Reduces vulnerability to loss	Indirect (stability)

Resilience and Adaptation: Global Case Studies

CSA is being scaled in Africa, Asia and Latin America through the climate-smart villages model and national strategies. In Kenya, adoption of conservation agriculture and agroforestry improved household food security and income, while CSA-integrated policies increased water productivity and drought resilience. In India, introduction of short-duration pulses and resilient rice varieties allowed smallholders to maintain harvests under shifting rainfall patterns. CGIAR and World Bank reports confirm CSA's positive effects on yields, income and resilience.

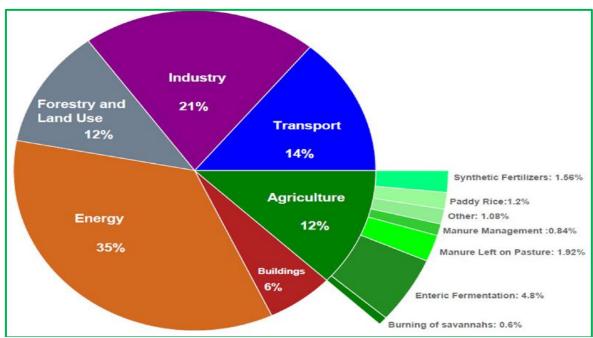


Figure 1: Sustainable Agro-Food Systems for Addressing Climate Change and Food Security

Greenhouse Gas Mitigation and Soil Health

While adaptation is central, CSA also mitigates GHGs through improved soil and crop management. Reduced tillage, diversified rotations and restoration of degraded land can lower CO₂, methane and nitrous oxide emissions. FAO and CGIAR analyses indicate deploying CSA on half the world's farmland could offset a significant share of agricultural emissions.

Table 2: CSA Practice Impacts on Key GHGs

Practice	CO ₂ Reduction	Methane Reduction	N ₂ O Reduction
Conservation tillage	High	None	Moderate
Paddy water management	None	High	Low
Agroforestry	Moderate	None	Low

Enabling Policies and Global Cooperation

The success of CSA depends on enabling policy environments: subsidies for best-bet practices, investment in extension, data systems and climate finance. The EU's Common Agricultural Policy, World Bank CSAIPs and India's climate-smart strategy integrate CSA through incentives, research investment and capacity building.

Agri Articles ISSN: 2582-9882 Page 225

Table 3: Policy Instruments for CSA

Policy Instrument	Example Region	Impact
Extension services	India, Kenya	Higher adoption of CSA, knowledge sharing
Farmer subsidies	EU, USA	Uptake of new crops, equipment
Insurance programs	Sub-Saharan Africa	Risk reduction, financial sustainability
Research investment	Global (World Bank)	Innovation, capacity building

Barriers, Trade-Offs and Pathways

Challenges include access to inputs and technology, affordability, data gaps and the need to tailor CSA to local agro-ecological and social contexts. Women farmers, who make up a significant proportion of labor in many regions, require focused support and inclusion for CSA's benefits to be equitably realized. As studies point out, maximizing CSA impact hinges on integrated approaches - linking farmers, scientists, markets and policymakers.

Conclusion

Climate-smart agriculture stands as a blueprint for food production in an unpredictable climate. Through a blend of technology, policy and inclusive participation, it safeguards crops, livelihoods and the planet for the generations ahead. Ongoing research, cooperative policy frameworks and investment are crucial for wider adoption and sustained impact.

References

- 1. Bai, Z., Caspari, T., Fierer, N., & Reynolds, B. (2019). Global soil nutrient cycles and nutrient limitation in response to agricultural intensification. *Global Change Biology*, 25(8), 2658-2670.
- 2. Food and Agriculture Organization of the United Nations (FAO). (2017). *Climate-smart agriculture sourcebook* (2nd ed.). FAO.
- 3. Harvey, C. A., Sosa, M., Chacón, M., Gresham, D., Somarriba, E., Sánchez, D., ... & Friedman, J. (2014). Climate-smart landscapes: Opportunities and challenges for integrating adaptation and mitigation in tropical agriculture. *Conservation Letters*, 7(2), 77-90.
- 4. Khatri-Chhetri, A., Aggarwal, P. K., Sapkota, T. B., & Shirsath, P. B. (2017). Farmers' prioritization of climate-smart agriculture (CSA) technologies. *Agricultural Systems*, *151*, 184-191.
- 5. Neufeldt, H., Jahn, M., Campbell, B. M., Beddington, J. R., Lassaletta, L., Müller, A., ... & Thornton, P. K. (2013). Climate-smart agriculture for food security. *Nature Climate Change*, *3*(12), 1143-1150.
- 6. Rosenstock, T. S., Lamanna, C., Kimaro, A., Arnold, J. E. M., & Neufeldt, H. (2016). The scientific basis of climate-smart agriculture: A systematic review protocol. *CCAFS Working Paper No. 138*. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).
- 7. Tian, H., Lu, C., Ciais, P., Michalak, A. M., Canadell, J. G., Saikawa, E., ... & Yang, Q. (2019). Responses of soil carbon sequestration to climate-smart agriculture practices: A meta-analysis. *Global Change Biology*, 25(10), 3492-3506.
- 8. Trautman, S., Hansen, J., & Lamanna, C. (2023). Climate-smart agriculture policies and priorities: AICCRA policy insight (COP28 Edition). Accelerating Impacts of CGIAR Climate Research for Africa (AICCRA).
- 9. World Bank Group. (2024). Nepal climate-smart agriculture investment plan. World Bank.
 - https://documents1.worldbank.org/curated/en/099405004272216892/pdf/P16883909c7d0 90c60af0d0c944f3704f3c.pdf

Agri Articles ISSN: 2582-9882 Page 226