

Agri Articles

(e-Magazine for Agricultural Articles)

Volume: 05, Issue: 06 (NOV-DEC, 2025)
Available online at http://www.agriarticles.com

**Open Company of the Co

Nitrogen Fixation and Its Importance in Crop Production *Pulkit Chawla

Centre for Conservation and Utilisation of Blue Green Algae, ICAR -IARI, New Delhi *Corresponding Author's email: chawlapulkit271@gmail.com

Nitrogen fixation is a fundamental biological and chemical process that converts inert atmospheric nitrogen (N2) into plant-available forms such as ammonia, enabling its assimilation into essential biomolecules like amino acids, nucleic acids, and chlorophyll. Although nitrogen constitutes nearly 78% of the atmosphere, plants cannot utilize it directly and rely on nitrogen fixation through biological, industrial, or natural abiotic pathways. Biological nitrogen fixation (BNF), carried out by symbiotic and free-living diazotrophic microorganisms such as *Rhizobium*, *Azotobacter*, *Azospirillum*, and *Frankia* is the most environmentally sustainable and agriculturally significant mechanism. It enhances soil fertility, improves crop productivity, supports legume-cereal cropping systems, reduces dependence on synthetic fertilizers, and promotes long-term sustainability in farming. In modern agriculture, integrating nitrogen-fixing crops, biofertilizers, and microbial inoculants offers an eco-friendly approach to nitrogen management, lowering cultivation costs while minimizing environmental impacts. Thus, nitrogen fixation plays a vital role in maintaining soil health, boosting crop yields, and ensuring sustainable agricultural production.

Introduction

Nitrogen is generally known to be among the most essential macronutrients required by crop plants for growth, development, and optimum productivity. Nitrogen plays an important role in the synthesis of amino acids, which are the structural elements of proteins that drive nearly every metabolic activity within the plant system. Besides this, nitrogen is an essential constituent of nucleic acids like DNA and RNA, controlling genetic expression and regulating cellular functions. Nitrogen also forms an integral part of chlorophyll, the green pigment responsible for capturing sunlight during photosynthesis, and thus it is indispensable for plant energy generation. While nitrogen is the most abundant atmospheric gas, comprising nearly 78% of the Earth's atmosphere, its diatomic gaseous form (N₂) is chemically inert because of the strong triple bond, which cannot be broken by plants. Most crop plants thus are not able to absorb or use atmospheric nitrogen directly and can only take up nitrogen in biologically reactive forms such as ammonium (NH₄⁺) and nitrate (NO₃⁻). To overcome this natural limitation, ecosystems depend on nitrogen fixation, an incredible biochemical process, which converts atmospheric nitrogen to plant-usable forms. Nitrogen fixation acts as the link between the very large pool of atmospheric nitrogen and the biological demand for reactive nitrogen, ensuring continuous nutrient supply to plants. This process is of great significance for global nitrogen cycling, contributes much to soil fertility, and plays an important role in sustainable crop production systems. Of the different types-biological, chemical, and industrial-nitrogen fixation mechanisms, biological nitrogen fixation, or BNF, has the greatest ecological relevance and agricultural importance. Knowing the mechanisms, microbial agents, symbiotic associations, environmental requirements, and overall importance of nitrogen fixation can help optimize crop yield with less dependence on chemical fertilizers and thus allow more environmentally friendly farming.

Nitrogen Fixation Concept

Nitrogen fixation is the biochemical and physicochemical process that reduces atmospheric nitrogen gas, N₂, to ammonia, NH₃, or other bioavailable nitrogenous compounds. This process is a conversion that has to be done because nitrogen gas is highly stable due to its triple covalent bond, which needs an appreciable amount of energy to break it. Upon conversion to ammonia, nitrogen can be converted to various organic forms that support plant growth.

Types of Nitrogen Fixation

A. Biological Nitrogen Fixation (BNF)

Biological nitrogen fixation is performed by specialized groups of bacteria and archaea that express the enzyme nitrogenase, which is capable of catalyzing the reduction of atmospheric nitrogen to ammonia. This process occurs under low-oxygen or microaerophilic conditions because nitrogenase is highly sensitive to oxygen. BNF is the most ecologically sustainable and agriculturally beneficial form of nitrogen fixation because it naturally enriches the soil with nitrogen without requiring external chemical inputs.

B. Abiotic Nitrogen Fixation

Abiotic nitrogen fixation does not involve life and is driven by natural physical forces. Events like the strike of lightning and forest fires create extremely high temperatures that facilitate the oxidation of atmospheric nitrogen into nitrogen oxides, or NOx. The nitrogen oxides finally dissolve in rainwater into the soil, where they transform into nitrates that can be absorbed by plants. Abiotic nitrogen fixation contributes only a small fraction of the total, yet it provides an important supplement in natural ecosystems.

C. Industrial Nitrogen Fixation

Industrial nitrogen fixation is a chemical process called the Haber–Bosch process, in which ammonia is synthesized from atmospheric nitrogen and hydrogen gas under extremely high pressure (150–300 atmospheres), elevated temperature (400–500°C), and the presence of metal catalysts. The ammonia produced by this process is the starting material for a wide range of nitrogenous fertilizers such as urea, ammonium nitrate, and ammonium sulfate. Industrial fixation nourishes large-scale agricultural production but it is extremely energy-intensive requiring high amounts of fossil fuels and thus contributes to greenhouse gas emissions. Because of this, industrial fixation is not as sustainable as biological fixation.

Biological Nitrogen Fixation (BNF)

Biological nitrogen fixation is executed mainly by a specialized group of prokaryotic microorganisms, commonly referred to as diazotrophs. They contain the nitrogenase enzyme system that allows them to reduce atmospheric nitrogen to ammonia through an energy-intensive reaction involving the consumption of ATP. Due to the high sensitivity of nitrogenase to oxygen, nitrogen-fixing microorganisms employ various strategies that protect the enzyme, which include cyst formation, specialized cell development, and symbiotic relationships with plants.

Microorganisms Involved in BNF

Diazotrophs, which are responsible for nitrogen fixation, can be divided into three main categories based on their ecological behavior and association with plants.

A. Symbiotic Nitrogen Fixers

Symbiotic nitrogen fixers generally live in close association with plants, often in nodules on roots, where they receive carbohydrates and a low-oxygen, protected environment from the host. In return, they supply ammonia to the plant, increasing nitrogen availability.

Rhizobium species form specialized nodules on the roots of leguminous crops such as pea, gram, lentil, clover, and soybean. These bacteria are among the most efficient nitrogen-fixing organisms known and contribute substantially to the nitrogen economy of leguminous cropping systems. Bradyrhizobium species are slow-growing microorganisms mostly associated with tropical legumes. They induce the formation of persistent, very effective nodules that fix nitrogen under unfavorable environmental conditions. The symbiotic

relationship of Sinorhizobium and Azorhizobium in legume plants, such as cowpea and Sesbania, is well described. They enhance plant growth and soil fertility, particularly in low-nitrogen soils. Frankia species, which are actinobacteria, form actinorhizal nodules in non-legume trees such as Casuarina, Alnus, and Myrica. These symbiotic systems are especially valuable in forest ecosystems, wasteland revegetation, and soil reclamation efforts. Symbiotic nitrogen-fixing systems can provide 50-300 kg per hectare per year, hence playing a very important role in sustainable agriculture and decreasing chemical fertilizer use.

B. Free-Living Nitrogen Fixers

Free-living nitrogen-fixing bacteria are independent in carrying out nitrogen fixation in the soil without forming any symbiotic association with plants. Though their contribution is smaller compared to symbiotic fixers, they are important in maintaining the basal nitrogen level in natural ecosystems and cultivated soils. The genus Azotobacter consists of aerobic, free-living nitrogen fixers, commonly found in neutral and well-aerated soils. They contribute organic nitrogen to the soil and also produce growth-promoting substances that enhance plant development. Clostridium species are obligate anaerobic bacteria that fix nitrogen under oxygen-free conditions usually found in waterlogged or compacted soils. Other free-living diazotrophs, including Beijerinckia, Derxia, and Klebsiella, play a role in nitrogen enrichment, especially in acidic or nutrient-poor soils. These organisms contribute to soil fertility through small but continuous amounts of usable nitrogen.

C. Associative (Facultative) Nitrogen Fixers

Associative nitrogen fixers do not form specialized nodules but live in close proximity to plant roots, often colonizing the rhizosphere. They depend partly on plant-derived carbon sources and contribute moderate amounts of nitrogen to the host plant. Species of Azospirillum associate with cereals such as maize, sorghum, and millets. They promote root development, enhance nutrient uptake, and contribute moderate amounts of nitrogen biologically. Herbaspirillum and Burkholderia species colonize the roots of several grasses and non-legume crops. They increase plant vigor by providing nitrogen and producing growth-promoting hormones. Associative nitrogen fixers can contribute 15 to 40 kg of nitrogen per hectare per year and are of value in cereal-based production systems and lowinput agriculture.

Mechanism of Biological Nitrogen Fixation

The nitrogenase enzyme complex is composed of two major metalloproteins: dinitrogenase reductase (Fe protein) and dinitrogenase (Mo–Fe protein), which are responsible for biological nitrogen fixation. Fe protein donates electrons to the Mo–Fe protein, whereas reduction of atmospheric nitrogen is catalyzed by the Mo–Fe protein. This enzymatic system works under strictly anaerobic or microaerophilic conditions because even trace amounts of oxygen irreversibly damage the nitrogenase complex. The nitrogenase enzyme uses a large quantity of ATP along with reducing equivalents to break the strong triple bond (N \equiv N) present in atmospheric nitrogen. This is a very energy-intensive process due to the extreme stability of the N₂ molecule and the considerable biochemical energy required to break its bonds. The overall chemical reaction for nitrogen fixation can be summarized as:

These include an extremely low oxygen concentration, a plentiful supply of ATP, and the presence of crucial micronutrients like molybdenum (Mo), iron (Fe), and in certain species vanadium (V). In symbiotic systems, carbohydrates supplied by the host plant are used by the bacterium as an energy source to drive nitrogen fixation. The ideal environment for nitrogenase activity in the root nodules of leguminous plants is formed by the synthesis of leghemoglobin, a pink-colored hemoprotein. Leghemoglobin functions as an oxygen buffer, binding excess oxygen to maintain low internal oxygen levels that prevent damage to the nitrogenase enzyme but still permit adequate respiration for energy production via ATP. This remarkable balance ensures efficient reduction of atmospheric nitrogen to ammonia within the root nodules.

Symbiotic Nitrogen Fixation in Legumes

The symbiotic association between legumes and bacteria of the genus Rhizobium is the most efficient and agriculturally relevant biological nitrogen-fixing system in nature. It provides the ability to grow under nitrogen-limiting conditions and, at the same time, enriches the soil nitrogen levels for subsequent crops. The development of functional nitrogen-fixing root nodules is a process that involves coordinated biological events:

1. Recognition and Chemical Signaling

This process is initiated through the release of flavonoid compounds from legume roots into the rhizosphere. The released flavonoids work as chemical attractants to the Rhizobium bacteria. As a response, Rhizobium produces Nod factors as signaling molecules, inducing root hair deformation and starting early nodule development.

2. Infection Thread Formation

Following chemical recognition, bacteria cause curling of root hairs to allow entry into the plant root. This is accompanied by the formation of an infection thread, a tubular structure that channels bacteria into the cortical tissues deeper in the root.

3. Nodule Organogenesis

Once they have reached the cortex of the root, bacteria elicit a rapid division of cortical cells that form a nodule primordium. This eventually differentiates into a mature root nodule that has a vascular connection to the plant.

4. Bacteroid Differentiation

Inside the nodule, the bacteria Rhizobium differentiate into bacteroids, the specialized form capable of fixing atmospheric nitrogen. These bacteroids reside in plant-derived membrane structures where nitrogen fixation actually occurs.

5. Nitrogen Fixation and Assimilation

The bacteroids fix atmospheric nitrogen (N₂), mostly converted to ammonia (NH₃), which is then rapidly assimilated by the plant into amino acids and proteins. This ammonia is incorporated into compounds such as glutamine and ureides, which are transported throughout the plant.

Nitrogen Contribution of Various Legumes

Different legumes contribute different amounts of nitrogen according to the species, environmental conditions, and Rhizobium strain efficiency: Soybean contributes roughly 80–100 kg N/ha. Groundnut fixes 40–60 kg N/ha. Pulses like chickpea, pigeon pea, and lentil fix 40–80 kg N/ha. Fodder legumes like lucerne and clovers contribute 200-300 kg N/ha and are highly valued for improving soil fertility. The substantial nitrogen fixed by legumes decreases the dependency on the use of synthetic fertilizers and improves the productivity in cropping systems.

6. Factors Affecting Biological Nitrogen Fixation

Efficiency of biological nitrogen fixation depends on several environmental and soil-related factors:

1. Soil pH

Biological nitrogen fixation works best in neutral to slightly alkaline soils, generally in the pH range of 6.5-7.5. Acidic soils inhibit Rhizobium survival and nodule formation.

2. Soil Temperature

The optimal temperature for nitrogen-fixing bacteria is from 25–30°C. Extreme heat or cold may drastically lower the efficiency of nitrogenase and the growth of bacteria.

3. Soil moisture

Drought and waterlogging are two extremes that adversely affect nitrogen fixation. Adequate moisture maintains bacterial motility, nodule formation, and metabolic activity, while in waterlogged conditions, oxygen availability is severely restricted.

4. Organic Matter Content: Organic matter provides an important carbon and energy source for free-living nitrogen-fixing bacteria. Higher organic matter content promotes microbial population growth as well as increases nitrogen fixation potential.

5. Micronutrient Availability

Molybdenum (Mo) and iron (Fe) are key micronutrients comprising the nitrogenase enzyme. Nitrogen fixation is severely limited by deficiencies of either of these elements.

6. Presence of Nitrate Fertilizers

High concentrations of nitrate in soil decrease the plant's need to form a symbiotic relationship with Rhizobium and thus suppress nodule formation and biological nitrogen fixation.

7. Compatibility of Host Plant and Rhizobium

Effective nitrogen fixation is dependent on compatibility between the host legume species and the inoculated strain of Rhizobium. Only the correct combinations give good nodulation and nitrogen fixation.

Industrial Nitrogen Fixation and Fertilizer Production

Industrial nitrogen fixation, mainly by the Haber–Bosch process, has transformed agricultural practices globally by making large-scale nitrogen fertilizer production possible. The process involves combining atmospheric nitrogen (N₂) and hydrogen (H₂) under extremely high pressures of 200–300 atmospheres and at high temperatures of 450–500°C in the presence of a metal catalyst to obtain ammonia (NH₃). The ammonia synthesized by means of the Haber–Bosch process is used as a raw material for the manufacture of many nitrogen-based fertilizers, including:

- ✓ Urea (46% N)
- ✓ Ammonium sulfate
- ✓ Ammonium nitrate
- ✓ Di ammonium phosphate (DAP)
- ✓ Various NPK complex fertilizers

Although industrial nitrogen fixation has made global food security possible by supporting intensive agriculture, it also contributes to environmental problems associated with emissions of greenhouse gases, water pollution by nitrate leaching, and soil acidification. For this reason, integration of biological nitrogen fixation with judicious fertilizer application is considered important in sustainable farming systems.

Importance of Nitrogen Fixation in Crop Production

1. Improves Soil Fertility

Nitrogen fixation enhances the natural soil nitrogen levels, decreasing dependency on external chemical fertilizers and improving the long-term productivity of the soil.

2. Improves Crop Growth and Yield

This biologically fixed nitrogen is converted into essential plant compounds such as amino acids, proteins, chlorophyll, and nucleic acids, and enhances vegetative growth, leaf expansion, photosynthesis, and grain formation.

3. Promotes Sustainable Agriculture

Biological nitrogen fixation reduces the need for synthetic fertilizers; as a result, it minimizes environmental pollution and protects ecological balance.

4. Vital for Legume-based Cropping Systems

Legumes included in the crop rotation leave substantial residual nitrogen for the succeeding cereal and oilseed crops, enhancing the overall productivity of the system.

5. Supports Low-Input and Organic Farming

BNF forms the very basis of organic agriculture, green manuring, and conservation farming where synthetic fertilizers are avoided or minimized.

6. Reduces Cost of Cultivation

Natural nitrogen from biological fixation reduces fertilizer costs, improving profitability on farms.

7. Maintains Soil Biological Health

The presence of nitrogen-fixing bacteria increases soil microbial activity, enzyme functions, and organic matter decomposition, improving soil structure and fertility.

8. Provides Nitrogen to Non-Legume Crops

Associative nitrogen fixers like Azospirillum and Herbaspirillum benefit cereal crops, millets, grasses, and fodder crops by providing moderate amounts of nitrogen and enhancing root development.

Role of Nitrogen Fixation in Cropping Systems

This process of nitrogen fixation contributes to soil fertility and improves productivity in most cropping systems. Inclusion of legumes or their microbial inoculants into conventional cropping patterns will help farmers maintain nitrogen levels in the soil, maintain good soil structure, and decrease their dependency on synthetic nitrogenous fertilizers.

A. Legume-Cereal Rotation

Legume–cereal rotation is one of the most effective approaches for improving soil nitrogen status in agricultural fields. Growing legumes such as chickpea, peas, soybean, or pigeonpea before cereals like wheat, rice, or maize often leaves substantial residual nitrogen in the soil due to the decomposition of nodules and root exudates. This residual nitrogen improves nutrient availability to the succeeding cereal crop, which generally results in an increase in cereal yields by 10–15% without extra nitrogen fertilizer application. Hence, not only does the productivity improve, but there is also a healthier microbial balance in the soil and more sustainability in the longer run.

B. Intercropping Systems

Biological nitrogen fixation has an added advantage with intercropping, the practice of growing two or more crops together on the same field. In common intercropping systems like maize + cowpea, sorghum + pigeonpea, and sugarcane + soybean, a partial transfer of leguminous-fixed nitrogen to the associated non-legume crop is feasible through belowground interactions and soil microbial processes. However, these systems enhance land-use efficiency, increase total biomass productivity, and favor soil aggregation and structure. The inclusion of legumes can also stimulate other beneficial microorganisms and improve nutrient cycling, hence making intercropping a sustainable farming approach.

C. Green Manuring

Green manuring involves the growth of fast-growing nitrogen-fixing plants, which are incorporated into the soil while still green. Some of the efficient green manure crops include Sesbania (dhaincha), Crotalaria, and Sunhemp, which are efficient nitrogen fixers that, upon decomposition, can add 60–90 kg N/ha. These green manures release nitrogen slowly as they decompose upon incorporation into the soil, enriching the soil organic matter and improving the structure, water retention, and microbial activity of the soil. This is especially important in rice-based systems, where Sesbania and other green manures have been traditionally used to enhance the productivity of rice with minimum fertilizer inputs.

Biofertilizers and Nitrogen Fixation

Biofertilizers are microbial inoculants containing useful organisms that can enhance the availability of nutrients to plants, particularly nitrogen. Application of biofertilizers encourages ecofriendly agriculture by increasing soil fertility and plant growth without the harmful environmental effects caused by the use of chemical fertilizers. Major Nitrogen-Fixing Biofertilizers

Rhizobium: Used for leguminous crops including chickpea, lentil, soybean, pea, and groundnut. Rhizobium inoculation leads to early nodulation, efficient fixation of nitrogen, and thereby better yields.

Azotobacter: This free-living nitrogen fixer is appropriate for crops such as maize, cotton, vegetables, and tobacco. In addition to nitrogen fixation, Azotobacter also produces growth-promoting substances such as auxins and vitamins.

Azospirillum: Generally used for millets, sorghum, rice, and sugarcane. Azospirillum increases root growth, enhances nitrogen uptake, and improves drought tolerance. Blue-Green Algae (BGA) and Azolla: Highly valued in lowland paddy fields. BGA and Azolla fix atmospheric nitrogen and release it directly into the water for rice plants to utilize. Azolla—

Anabaena symbiosis can contribute 20–30 kg N/ha and significantly reduce the need for urea in rice cultivation. Biofertilizers increase the availability of nitrogen through biological processes, which helps improve plant vigor and supports soil microbial diversity for sustainable agriculture.

Challenges and Limitations in Nitrogen Fixation

Though nitrogen fixation can play a very important role in sustainable crop production, there are several constraints on fully exploiting this natural process for agriculture. One major challenge is the low survival rate of introduced microbial inoculants in natural soils due to competition from the native microbes that generally lowers their effectiveness. Yet another important limitation involves incompatibility between hosts and microbes; that is, not all species of Rhizobium are capable of forming efficient symbiosis with every other legume species. Environmental stresses like salinity, drought, extreme temperatures, and soil acidity can severely affect nodule formation and nitrogenase activity. This is further aggravated by a general lack of awareness about biofertilizers among farmers in many regions and appropriate inoculation and management practices. An additional problem with free-living nitrogen fixers is that they establish slowly, often with lower nitrogen-fixing efficiencies than symbiotic systems. Possible solutions, however, come from modern technologies. The potentials of genetic engineering, CRISPR gene editing, and microbiome manipulation can enable the engineering of more efficient diazotrophic strains with improved stress tolerance and better host compatibility. These newer technologies could help overcome current pitfalls and expand the beneficiaries of nitrogen fixation within agriculture.

Future Prospects of Nitrogen Fixation

The future of nitrogen fixation research is highly promising, with several leading-edge technologies offering new pathways to increase efficiency and reduce dependence on chemical fertilizers. There is now great interest in engineering non-leguminous crops like rice, wheat, and maize to produce nodules and therefore to fix their own nitrogen. If successful, this would revolutionize agriculture and remove the requirement for large-scale application of nitrogen fertilizers Other exciting developments are the engineering of climateresilient diazotrophs that can function under drought, salinity, and high-temperature conditions. Again, there has been enhancement of nitrogenase stability under oxygen-rich environments, further extending the usability of nitrogen-fixing microbes across different ecosystems. Another promising avenue involves the development of microbial consortia that have several beneficial microbes working in concert to supply nitrogen, phosphorus, and growth hormones. Such consortia could not only improve nitrogen fixation but also overall soil health and crop resilience. Nitrogen fixation is envisaged to play an increasingly central role in environmentally sustainable agriculture as biotechnology develops. 13. Conclusion Nitrogen fixation is the backbone of sustainable agriculture, wherein atmospheric nitrogen is converted into plant-available forms. This natural process enhances soil fertility, promotes plant growth, increases crop yields, decreases dependence on chemical fertilizers, and protects the environment from pollution and deterioration. Through legume rotations, intercropping, green manuring, and the use of biofertilizers, the incorporation of biological nitrogen fixation into modern farming can help farmers reduce cultivation costs and ensure long-term soil productivity. Understanding and exploiting nitrogen fixation will become increasingly important as agriculture continues to evolve toward eco-friendly resourceefficient systems. Continuous research, farmer education, and advances in biotechnology will further enhance nitrogen fixation efficiency and contribute to global food security. With the use of engineered crops, improved microbial strains, and microbial consortia, nitrogen fixation may soon be poised to revolutionize nutrient management and forge a truly sustainable future for global agriculture.

References

- 1. O'Hara, G. W. (1998). The role of nitrogen fixation in crop production. *Journal of Crop Production*, 1(2), 115-138.
- 2. Beringer, J. E., & Johnston, A. W. (1984). The significance of symbiotic nitrogen fixation in plant production. *Critical reviews in plant sciences*, *1*(4), 269-286.
- 3. Emerich, D. W., & Krishnan, H. B. (Eds.). (2009). Nitrogen fixation in crop production (Vol. 52). ASA-CSSA-SSSA.
- 4. Newton, W. E., & Burgess, B. K. (1983). Nitrogen fixation: its scope and importance. In *Nitrogen Fixation: The Chemical—Biochemical—Genetic Interface* (pp. 1-19). Boston, MA: Springer US.
- 5. Bohlool, B. B., Ladha, J. K., Garrity, D. P., & George, T. (1992). Biological nitrogen fixation for sustainable agriculture: A perspective. *Plant and soil*, *141*(1), 1-11.