

Agri Articles

(e-Magazine for Agricultural Articles)

Volume: 05, Issue: 06 (NOV-DEC, 2025)
Available online at http://www.agriarticles.com

**Open Company of the Co

Marker-Assisted Selection in Fruit Crop Breeding: A Smart Tool for Better Fruits

*Dr. Lalrinchhani Chhangte¹, Dr. Rody Ngurthankhumi², HP. Lalhmangaihzuali³ and Lalramchhana³

¹Ph.D. (Genetics and Plant Breeding), Nagaland University, Nagaland-798627

²Ph.D. (Fruit Science), Mizoram University, Mizoram-796004

³Research Scholar (Fruit Science), Mizoram University, Mizoram-796004

*Corresponding Author's email: rcichhangte8@gmail.com

Fruit crops are vital to global food and nutritional security. They provide essential vitamins, minerals, antioxidants, and income to millions of farmers. However, developing new fruit varieties with better yield, improved quality, disease resistance, and climate adaptability is a long and complex process. Traditional breeding in fruit crops often takes 8–15 years or more due to their long juvenile phase. To accelerate this process, scientists use Marker-Assisted Selection (MAS)—a modern molecular breeding technique that helps identify desirable traits at the DNA level long before the plant matures. MAS acts as a powerful bridge between classical plant breeding and molecular genetics.

What is Marker-Assisted Selection (MAS)?

Marker-Assisted Selection involves the use of DNA markers, which are identifiable sequences within a plant's genome. These markers are closely linked to genes controlling important traits. Think of markers as flags that show the presence or absence of a specific gene.

For example

- A marker linked to a disease-resistance gene tells the breeder which seedlings are resistant.
- A marker linked to fruit sweetness helps identify sweeter lines early.
- This allows breeders to select only the best-performing genotypes even before planting them in the field.

Types of DNA Markers Used in MAS

Modern fruit breeding uses several marker types: "Itural Articles

- 1. RFLP Restriction Fragment Length Polymorphism: One of the earliest marker systems; accurate but slow and expensive.
- 2. RAPD Random Amplified Polymorphic DNA: Quick and inexpensive but sometimes unreliable.
- 3. SSR Simple Sequence Repeats (Microsatellites): Highly accurate, co-dominant, widely used in fruit breeding.
- 4. SNP Single Nucleotide Polymorphisms (Most advanced): Extremely precise and abundant; foundation for genomic selection.

Why MAS is Essential for Fruit Crop Breeding?

Fruit crops pose several challenges:

✓ Long Juvenile Periods: Many fruit plants take 3–7 years to bear fruit. MAS avoids waiting by detecting traits in seedlings.

Agri Articles ISSN: 2582-9882 Page 244

- ✓ Complex Traits: Fruit traits like sweetness, seedlessness, and color are controlled by multiple genes.
- ✓ Issues with Traditional Methods: Environmental effects, seasonal variations, and long-term trials make breeding slow.

MAS solves these challenges by offering:

- 1. Faster Breeding: Reduces breeding cycles by several years.
- 2. Higher Precision: Selection is based on genetic information, not appearance alone.
- 3. Early Disease Screening: Important for diseases like:

Apple scab

Citrus tristeza

Mango malformation

Grapevine downy mildew

4. Better Fruit Quality: MAS helps improve:

Taste

Aroma

Nutritional value

Shelf life

Texture

5. Resource and Cost Efficiency: Only the best seedlings are taken to the field \rightarrow saves land, labor, time.

How Does MAS Work? (Step-by-Step Example)

1. Identify Trait of Interest

Example: Disease resistance, sweetness, or seedlessness.

2. Locate Gene and Its Marker

Researchers identify DNA markers linked to the desired gene.

3. Collect Leaf Samples from Seedlings

DNA is extracted in the lab.

4. Screen the DNA Using PCR or Sequencing

This tells which seedlings contain the desired gene.

5. Select Only Desirable Plants

Non-ideal plants are removed early \rightarrow saves years of effort.

6. Use Selected Plants for Breeding

Crossing and hybridization are done using confirmed genetically superior parents.

Successful Applications of MAS in Fruit Crops

1. Apple (Malus domestica)

Scab-resistant breeding using Vf (Rvi6) gene markers.

Development of improved varieties like Prima, Priscilla.

2. Grapes (Vitis vinifera)

Identification of markers for seedlessness.

Improving resistance to powdery mildew and downy mildew.

3. Mango (Mangifera indica)

Markers linked to pulp color, aroma, TSS (sweetness).

Future breeding for malformation resistance.

4. Citrus (*Citrus spp.*)

CTV (Citrus Tristeza Virus) resistance markers used widely.

5. Banana (Musa spp.)

MAS used for Fusarium wilt resistance improvement.

6. Strawberry (Fragaria × ananassa)

Enhanced firmness, flavor, aroma, and disease resistance.

Agri Articles ISSN: 2582-9882 Page 245

MAS vs Traditional Breeding

Parameter Feature Traditional Breeding Marker-Assisted Selection

Time required 8–15 years 3–5 years
Accuracy Moderate Very high
Field trials Multiple years Reduced
Disease screening Slow and risky Rapid and safe
Cost Higher in long-term More cost-effective

Future of MAS in Fruit Breeding

The future holds even more powerful technologies:

1. Genomic Selection (GS)

Predicting performance of plants using whole-genome data.

2. CRISPR Gene Editing

Creating targeted changes for superior varieties.

3. High-Throughput Genotyping Platforms

Testing thousands of seedlings at once.

4. Integration with AI and Machine Learning

Predicting traits faster and more accurately.

5. Nanotechnology in DNA Detection

Ultra-fast marker analysis in the field.

Conclusion

Marker-Assisted Selection is shaping the future of fruit crop improvement. It is a smart, scientific, and revolutionary approach that reduces breeding time, increases accuracy, and supports the development of superior fruit varieties. As climate change, pests, and global food demands rise, MAS offers a powerful tool to ensure healthier, tastier, and more resilient fruits for the world.

Agri Articles ISSN: 2582-9882 Page 246