

Smart Food Testing: How Biosensors and Lab-on-a-Chip

Technologies Are Transforming Food Safety

*Hyderali Shihabudheen U H¹, Suvarna K², Shakkira PK³ and Aman Raj⁴

¹Assistant Professor, Department of Food Technology, TKM Institute of Technology, Kollam-691505, APJ Abdul Kalam Technological University, Kerala, India

²Department of Food Science and Technology, School of Health Sciences, University of Calicut, Malappuram-673635, Kerala, India

³Department of Food Science and Technology, School of Health Sciences, University of Calicut, Malappuram-673635, Kerala, India

⁴Department of Soil and Water Conservation Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj-211007, U.P., India

*Corresponding Author's email: hyderaliapk@gmail.com

Food safety is no longer a matter of hope in a world with global supply chains, unpredictable climate, and complex processing; it demands precise, rapid, and reliable detection systems. Traditional laboratory tests microbial cultures, chemical assays, or DNA sequencing, remain gold standards, but their drawbacks are well-known: slow turnaround times, need for specialised equipment and skilled personnel, and delays that allow contaminated food to move through the supply chain. Enter the era of smart food testing, powered by biosensors and lab-on-a-chip (LOC) platforms. These technologies shrink entire laboratories into compact, portable, often smartphone-compatible devices enabling on-site, real-time detection of pathogens, toxins, allergens, chemicals and spoilage indicators. What once required days of lab work can now be done in mere minutes. The implications are vast: fewer outbreaks, less food waste, stronger supply-chain transparency, and empowered consumers.

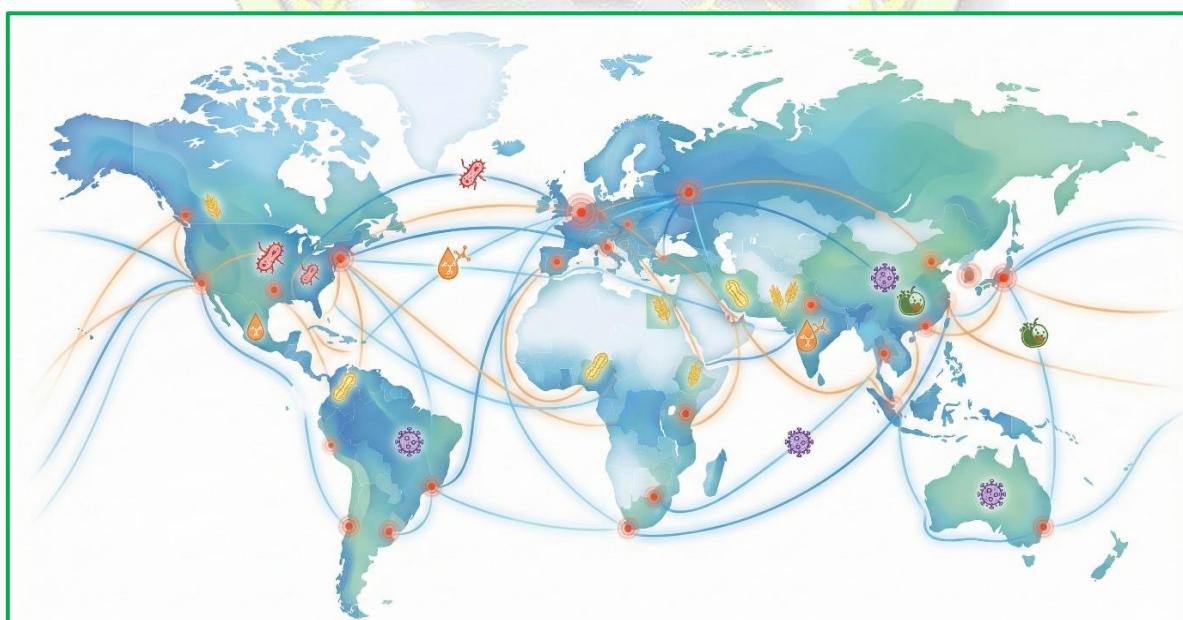
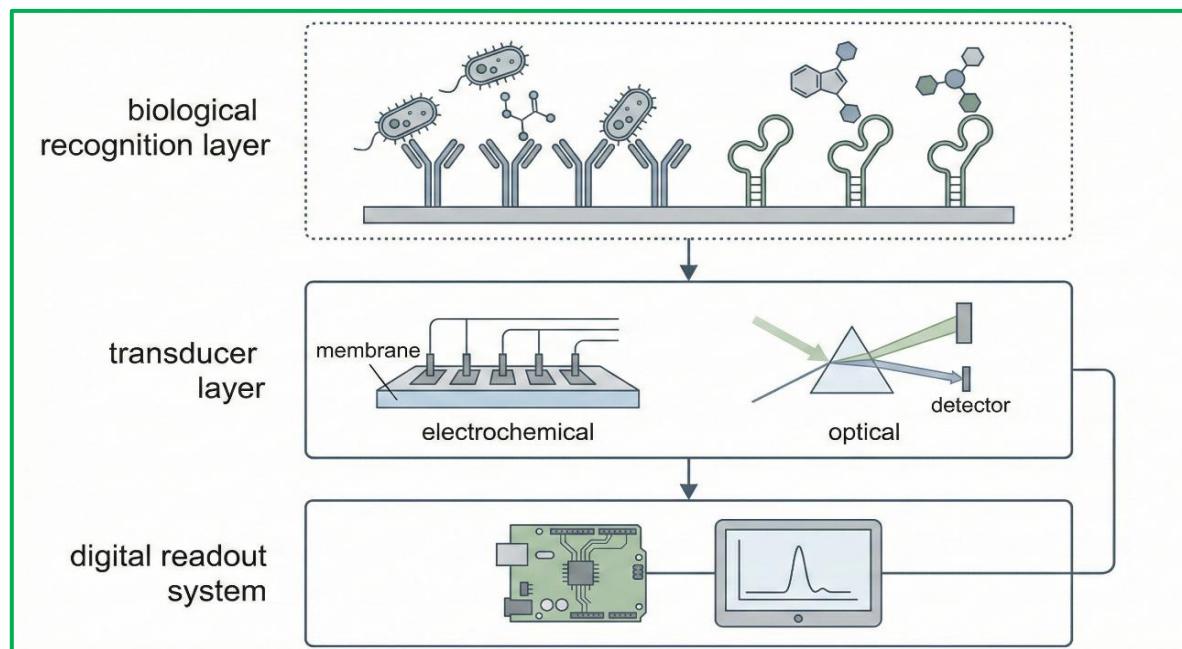


Figure 1. Global supply chain complexity and reported contamination events emphasize the growing need for rapid and distributed food safety testing systems.

How Biosensors Work: From Molecule to Measurable Signal


At the heart of biosensor technology is a deceptively simple yet powerful concept: combine a biological recognition element with a physical or electrochemical transducer to detect a target analyte, such as a bacterium, toxin, pesticide, or allergen and convert that detection into a measurable signal.

Key Components of a Biosensor

1. **Biorecognition element** – This is the “sensor’s nose.” It might be an enzyme, an antibody, an aptamer (short DNA/RNA sequence), a nucleic acid probe, or even a whole cell. This component binds specifically to the target molecule, ensuring high selectivity.
2. **Transducer** – Once binding occurs, the transducer converts the biochemical interaction into a measurable physical signal (electrical, optical, thermal, acoustic, etc.).
3. **Signal processing and output** – The signal is amplified, interpreted, and displayed in a user-friendly form as a light change, voltage shift, colour change, or digital readout.

Example: Electrochemical Biosensors

In many food-safety biosensors, electrodes are coated with antibodies or aptamers. When the target pathogen (e.g., *E. coli*, *Salmonella*) attaches, it alters the electrical properties at the electrode surface (impedance or current flow), which can be measured precisely. These sensors often provide rapid detection with high sensitivity sometimes detecting just a few bacterial cells.

Figure 2. Schematic illustration of biosensor components, showing the biorecognition element that binds the target contaminant and the transducer that converts the interaction into a measurable signal.

Example: Optical / Nanosensor-Based Systems

Alternatively, biosensors may use optical changes, fluorescence, colourimetric shifts, or surface-plasmon resonance triggered by binding events. Nanomaterials (e.g. gold nanoparticles, graphene) can amplify these signals, enhancing sensitivity and enabling detection of toxins, allergens or chemical residues at extremely low concentrations.

Because these systems do not require full-scale lab equipment, they offer enormous advantages: low sample volume, minimal reagents, portability, and fast results often within minutes.

Lab-on-a-Chip: Bringing the Laboratory to the Field

While biosensors can detect single targets quickly, lab-on-a-chip (LOC) devices offer broader functionality. A LOC system miniaturises and integrates multiple lab processes, sample

handling, reaction, separation and detection onto a single microfluidic chip, typically small enough to fit in a pocket or attach to a smartphone.

What Happens Inside the Chip

- ❖ **Microfluidics:** Tiny channels (micro- to nano-scale) guide fluids such as juice, milk, water, or diluted extracts through the chip.
- ❖ **Sample preparation:** The chip may filter, concentrate, or lyse cells (to release DNA or toxins).
- ❖ **Reaction zones:** Reagents such as antibodies, enzymes or amplification reagents mix with the sample in controlled zones.
- ❖ **Detection modules:** Depending on design, detection may occur via electrochemical sensors, fluorescence, color change, or optical readout.

Some modern LOC platforms integrate **nucleic-acid analysis**, allowing DNA/RNA-based detection of pathogens such as *Salmonella*, *Listeria*, or viral contaminants by combining extraction, amplification, and detection all on-chip.

Why LOC Matters for Food Safety

- **Speed:** Because reaction volumes are minute and thermal mixing is rapid, tests that once took hours or days can be completed in 15–30 minutes.
- **Low resource use:** Very small sample and reagent volumes reduce waste and cost.
- **Portability:** Chips can be used in factories, farms, retail centres, and even in home kitchens.
- **Multiplexing potential:** One chip can detect multiple pathogens, toxins or contaminants simultaneously ideal for complex foods or large volume screening.

Overall, LOC chips bring the capabilities of sophisticated analytical labs to field conditions transforming how food safety is managed.

Real-World Applications and Impact

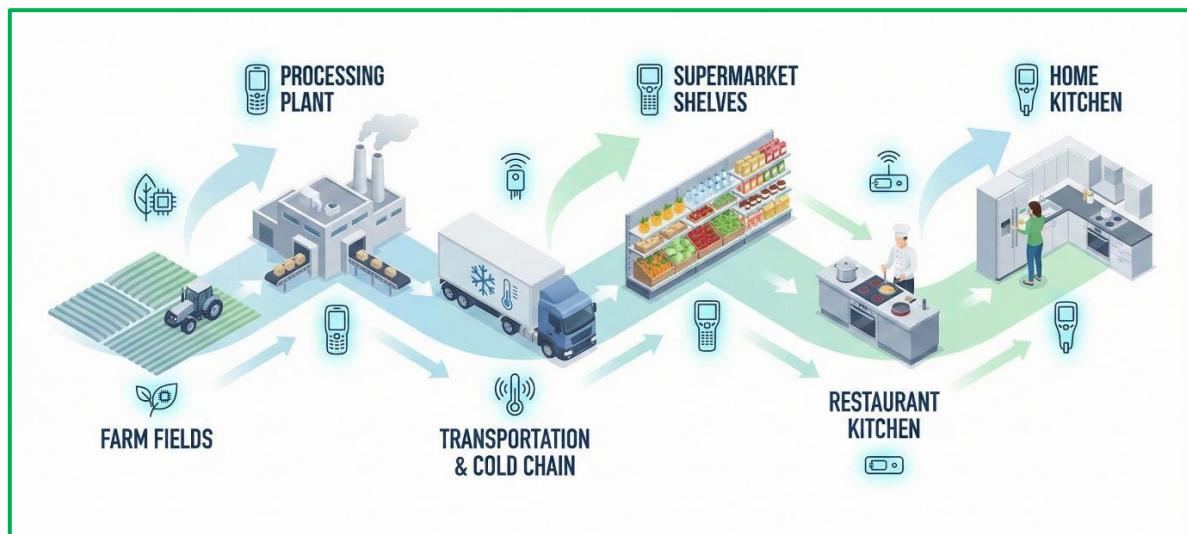
1. Factory and Processing Facilities

Food processors frequently handle large volumes under strict timelines. Implementing biosensor- or LOC-based testing allows rapid screening of raw ingredients, hygiene monitoring on surfaces, and final product checks before packaging. This reduces recall risks and protects public health, while cutting down delays linked to laboratory turnaround times.

2. Supply Chain & Cold-Chain Monitoring

Perishable goods seafood, dairy, and fresh produce, face spoilage risks during transportation and storage. Embedded biosensors or portable testing kits can detect early spoilage indicators (toxins, microbial metabolites, chemical changes) even before spoilage becomes visible or odour becomes apparent. This helps prevent food waste and ensures safer distribution.

3. Retail and Supermarkets


Retailers can verify quality and safety of bulk supply or unpackaged goods using rapid tests. This can reduce premature disposal and help manage inventories more precisely. Small-scale retailers in remote or resource-limited regions can also benefit.

4. Household Testing & Consumer Empowerment

In the near future, smart-testing devices may become accessible to households. For example, a consumer could test milk, juice, or produce before use, particularly useful for parents, elderly households, or people with allergies. This democratizes food safety, giving end-users control over what they consume.

5. Agriculture and Farming

Farmers can test water, soil, or livestock feeds for pathogens, toxins, antibiotic residues or pesticide contamination enabling early intervention. This proactive detection can reduce crop losses, protect livestock health, and improve overall farm safety.

Figure 4. The integration of biosensors and lab-on-a-chip devices throughout the farm-to-fork chain enables real-time monitoring of food quality at production, processing, storage, retail, and consumer levels.

Benefits and Challenges: What Needs Consideration

Benefit	Challenge / Limitation
Rapid detection (minutes), faster decisions	Sensitivity and specificity vary by technology; false positives/negatives are possible
Portability and on-site testing, and better coverage	Devices must be rugged, user-friendly, and maintain calibration across conditions
Low sample/reagent volume and cost-effective	Some tests require sample pre-treatment or enrichment before detection
Multiplex detection and broad screening	Multiplexing may complicate signal interpretation; cross-reactivity risk
Consumer empowerment and transparency	Widespread use requires affordability, regulation, and public awareness

Despite these challenges, ongoing research and technological advancement continue to improve reliability, affordability, and ease of use. As more data accumulates and regulatory frameworks adapt, biosensor and LOC adoption are expected to grow steadily.

The Future: Connected Food Safety and Smart Supply Chains

Smart food testing does not stand alone; it integrates into a broader ecosystem of food traceability, smart packaging, IoT monitoring, and data-driven supply-chain management.

Imagine this scenario:

1. A farm harvests produce and performs immediate biosensor tests.
2. Produce is packed in sensor-enabled containers that track temperature, humidity, and spoilage markers during transport.
3. Retailers receive live quality data and route shipments accordingly.
4. At supermarket delivery or consumer purchase, a hand-held tester or smartphone-based reader verifies freshness or detects contaminants.
5. Smart refrigerators at home log storage data, alerting the user if conditions worsen or the food nears spoilage.

Such an integrated system not only reduces risk but promotes transparency, reduces waste, and potentially offers personalized consumption guidance based on health data, allergies, or dietary restrictions. Additionally, emerging advances in nano biosensors, CRISPR-based detection, and paper-based microfluidic chips promise even cheaper, disposable, and widely accessible testing devices, bridging gaps in resource-limited regions and supporting global food safety.

Figure 5. Concept vision of a connected food safety ecosystem in which biosensors interface with digital platforms, enabling predictive monitoring and real-time decision-making.

Conclusion: A New Era of Food Safety

Biosensors and lab-on-a-chip devices represent a paradigm shift in how we approach food safety, quality and trust. They offer speed, portability, affordability and accessibility qualities that traditional laboratory testing cannot match in a fast-moving global food system. By putting real-time testing tools into the hands of producers, regulators, retailers, and potentially even consumers, smart food testing has the power to reduce outbreaks, prevent waste, build transparency, and restore confidence in what we eat. As these technologies mature and integrate with smart packaging, IoT systems, supply-chain analytics and consumer tools, the invisible risks hiding in our food may become visible, preventable, and manageable. The future of safe, sustainable and trustworthy food begins not on a plate but in a tiny chip.

References

1. Awlqadr, F. H., Altemimi, A. B., Qadir, S. A., Salih, T. A. H., Alkanan, Z. T., AlKaisy, Q. H., ... & Hesarinejad, M. A. (2025). Emerging trends in nano-sensors: A new frontier in food safety and quality assurance. *Helijon*, 11(1), e41181.
2. Lonchamps, P. L., He, Y., Wang, K., & Lu, X. (2022). Detection of pathogens in foods using microfluidic “lab-on-chip”: A mini review. *Journal of Agriculture and Food Research*, 10, 100430.
3. Mi, F., Hu, C., Wang, Y., Wang, L., Peng, F., Geng, P., & Guan, M. (2022). Recent advancements in microfluidic chip biosensor detection of foodborne pathogenic bacteria: a review. *Analytical and Bioanalytical Chemistry*, 414(9), 2883-2902.
4. Zolti, O., Suganthan, B., & Ramasamy, R. P. (2023). Lab-on-a-chip electrochemical biosensors for foodborne pathogen detection: A review of common standards and recent progress. *Biosensors*, 13(2), 215.