

Cultural Blueprint: A Smart and Sustainable Management Approach Against Nematodes

Rupak Jena¹, *Divyanivedita Pradhan¹, Raghu S¹, Milan K Lal², Simly Das³ and SD Mohapatra¹

¹Division of Crop Protection, Central Rice Research Institute, Cuttack, Odisha

²Division of Crop Physiology and Biochemistry, Central Rice Research Institute, Cuttack, Odisha, India

³Department of Nematology, Odisha University of Agriculture and Technology, College of Agriculture Bhawanipatna, 751003, Odisha, India

*Corresponding Author's email: divyaniveditapradhan@gmail.com

Rolling back time our ancestors always considered soil to be pious, living and enriching. Cultural methods and local ITK's were adopted for management of various insect, pest and diseases as the pesticides and insecticides were viewed negatively. Approaches such as crop rotation with non-hosts, incorporation of organic amendments, use of resistant varieties, deep ploughing, soil solarization, cover cropping, and optimized planting dates provided sustainability, reserved the soil microbes, provided time to reset and use the natural resources in efficient way for benefit of our soil. This leads to an economic, farmer friendly environmentally safe approach for long term nematode management. This cultural blueprint thus represents an efficient, scalable, and ecologically sound strategy for mitigating the impact of nematodes in diverse agro-ecosystems.

Introduction

Plant parasitic nematodes have played significant role in ancient agriculture causing severe crop loss leading to famine and migration of human population (Kumar *et.al.*, 2020). It is estimated that average annual loss in India due to nematodes is about 21.3%, and states like Tamil Nadu, Karnataka, Odisha & Uttar Pradesh have caused repeated yield loss in vegetable, pulses and plantation crops (Reddy, 2021). The devastating parasitic nematode groups such as *Meloidogyne* spp., *Herterodera* spp., *Radopholus similis*, *Pratylenchus* spp. and *Rotylenchulus* spp. forms major constraints causing severe damage to roots resulting in reduction of nutrient uptake leading to stunted growth, chlorosis, wilting and poor yield quality (Prasad *et.al.*, 1987). To over come nematode infestation for meeting the steep food demand farmers rely on synthetic chemicals which are total microbiome killers. According to major international agencies such as UNEP, WHO, and FAO, chemical-intensive farming systems leads to widespread environmental degradation and increased health risks for farming communities and consumers. UNEP Synthesis Report (2022) documents that environmental and health impacts of pesticide and fertilizer use and calls for minimizing their risks. WHO-FAO JMPR Reports highlight concerns about pesticide residues in food and their toxicological effects. These agencies recommend promoting eco-friendly practices, reducing highly hazardous pesticides, strengthening regulation, and adopting integrated pest management (IPM).

Cultural Methods of pest management and its principle

The soil, that is considered and worshiped as living goddess by our ancestors, is dying because its fauna is fast diminishing. To restore the lost status the policy makers are

advocating organic, cultural and biological methods. The main idea of cultural management is to manage the crop ecosystem in such a way that pests do not get favourable conditions to multiply or damage the crops. Cultural methods of pest management are eco-friendly farming practices that helps to prevent pest infestations by modifying the crop diversity rather than relying on chemical pesticides (Kamra & Sharma, 2000). The main aim is to prevent pest outbreaks through crop rotation and other methods which breaks the life cycle of soil-borne pests and nematodes. Some major cultural techniques are field sanitation that involves removing of weeds, infected plant residue and burning infected plants. Intercropping and trap cropping reduce the pest population and deep ploughing helps to reduce pest eggs, pupae and larval stages. Overall cultural pest management is cost effective, sustainable and eco-friendly which contributes to long term agricultural productivity and promotes good soil health (Jain et.al.,2012).

Mitigation of nematodes in cultural web

In recent times cultural management practices forms the foundation of sustainable and environmentally safe strategies for controlling plant parasitic nematodes. These methods primarily aim to reduce nematode populations by enhancing soil health and without relying on toxic chemicals. Cultural approaches include crop rotation, use of resistant varieties, organic amendments, green manuring, bio-fumigation, soil solarization and field sanitation. Crop resistant varieties break the continuity of host availability. Organic amendment such as farm yard manure and neem cake improves soil fertility by releasing active compounds like azadirachtin and limonoids which are toxic to the nematodes and inhibits their egg hatching and movement. Similarly, bio-fumigation with brassica crops (mustard & radish) produce isothiocyanates, natural volatile compounds that kill and suppress nematodes while soil solarization inhibits nematode communities through thermal toxicity. These cultural practices also stimulate beneficial soil microorganisms that acts as natural antagonists to nematodes. Overall the integration of these eco-friendly approaches creates a toxic environment for nematodes while improving crop vigour and crop productivity.

Table 1: Examples of commonly advised cultural management strategies against nematodes to farmers.

Nematode (Common spp.)	Cultural Management practices	Management Strategy/ Field application	Mechanism of nematode suppression	References
Root-knot nematode (<i>Meloidogyne</i> spp.)	Crop rotation, resistant/ tolerant cultivars, marigold (<i>Tagetes</i> spp.) as cover crop	Crop Rotation with non-host crop (cereals, maize or legumes). Use of marigolds mustard as trap crop	Breaks host availability and reduces reproduction, marigold produces nematocidal compounds which prevent rise of nematode population.	(Jain et.al.,2012)
Cyst Nematode (<i>Heterodera/ Globodera</i>)	Long term rotation, resistant cultivars, field sanitation	Rotate with non host crops (Maize, sunflower), destroy crop residue, Use certified and clean seed.	Long rotation reduces egg hatch and cyst survival by removing hosts, resistant varieties restrict nematode life cycle & lower soil inoculum	(Chandel et.al.,2020)
Lesion nematodes (<i>Pratylenchus</i> spp.)	Green manuring & organic amendments	Crops like mustard or sunhemp, Incorporate decomposed farmyard manure or biofumigants.	Organic matter enhances microbial antagonists and releases toxic volatiles, improves soil health and plant tolerance.	(Prasad et.al., 1987)

Reniform nematode (<i>Rotylenchulus reniformis</i>)	Crop rotation with non host, organic amendments	Rotate cotton with maize or sorghum, enrich soil with neem cake or vermicompost.	Rotation interrupts the nematodes life cycle, neem compound inhibits egg hatching.	(Das and Mahalik, 2024)
Dagger nematodes (<i>Xiphinema</i> spp.)	Sanitation and weed host removal	Remove alternate host & volunteer plants, avoid movement of contaminated soil and planting materials	Minimizes nematode population & associated virus transmission, sanitation prevent field to field spread.	(Khan et.al.,2014)
Multiple nematode genera	Soil solarization	Cover moist soil with transparent polythene sheet in hot summer for 4-6 weeks.	Increases soil temperature which helps to reduce inoculum density and weed growth.	(Khan and Hasan,2010)
Multiple nematode genera	Bio-fumigation using <i>Brassica</i> spp. residue	Grow mustard or radish before planting main crop.	Hydrolysis of glucosinolates produces isothiocyanates toxic to nematodes which helps in suppressing their population	(Ghosh and mandal, 2018)
General integrated approach	Integrated cultural management	Combines rotation, resistant cultivars, solarization, soil amendment,	Disrupts eggs, enhances microbial activity and maintains soil health.	(Khan and Hasan,2010)

Innovative cultural methods for nematodes management

Beyond conventional crop rotation and organic amendments new strategies emphasize bio intensive and climate smart practices that modify soil eco system to suppress nematode naturally. Bio-fumigation using improved brassica and tagetes cultivars have gained importance as their high glucosinolate and triphane content releases volatile compounds toxic to nematodes during decomposition. Carbon rich organic amendments (biochar, vermicompost) enhance soil microbial diversity. Moreover, precision nutrient and irrigation management reduces nematode favourable soil conditions by maintaining optimum moisture and root vigour. Integration of these innovative cultural methods with biological and botanical controls forms a holistic approach for integrated nematode management (INM) that promotes both crop productivity and soil resilience (Sivasubramaniam et.al.,2020).

Conclusion

Global water scarcity is only going to make the nematodes problem worse and with chemicals getting banned each day managing nematodes are going to be an serious agricultural issue. To secure future agricultural productivity emphasis must be placed on farmer awareness, regular soil health diagnostic facilities and promoting biological, cultural and genetic tools. Overall, adopting sustainable nematode management strategies will not only protect crops but also ensure long term food security, environmental safety and economic stability for farming communities. Implementing sustainable cultural management practices can help India to secure higher yields, reduce pesticide application and promote long term food and economic security.

References

1. Prasad, J. S., Panwar, M. S., & Rao, Y. S. (1987). Nematode problems of rice in India. *International Journal of Pest Management*, 33(2), 127-136.
2. Kamra, A., & Sharma, S. B. (2000). Soil temperature regimes and nematode distribution in India. *Indian Journal of Nematology*, 30(2), 219-224.

3. Khan, M. R., & Hasan, M. A. (2010). Nematode diversity in banana rhizosphere from West Bengal, India. *Journal of plant protection research*.
4. Jain, R. K., Khan, M. R., & Kumar, V. (2012). Rice root-knot nematode (*Meloidogyne graminicola*) infestation in rice. *Archives of Phytopathology and Plant Protection*, 45(6), 635-645.
5. Ghosh, M., & Mandal, S. (2018). Free-living marine nematode diversity from the Indian coasts. *Marine Biodiversity*, 48(1), 179-194.
6. Khan, M. R., Jain, R. K., Ghule, T. M., & Pal, S. (2014). Root knot nematodes in India. A comprehensive monograph. *All India co-ordinated research project on plant parasitic nematodes with integrated approach for their control*. Indian Agricultural Research Institute, New Delhi.
7. Kumar, V., Khan, M. R., & Walia, R. K. (2020). Crop loss estimations due to plant-parasitic nematodes in major crops in India. *National Academy Science Letters*, 43(5), 409-412.
8. Sivasubramaniam, N., Hariharan, G., & Zakeel, M. C. M. (2020). Sustainable management of plant-parasitic nematodes: an overview from conventional practices to modern techniques. *Management of phytonematodes: recent advances and future challenges*, 353-399.
9. Chandel, Y. S., Bhadu, S. S., Salalia, R., Thakur, S., Kumar, S., Somvanshi, V. S., ... & Walia, R. K. (2020). Prevalence and spread of potato cyst nematodes, *Globodera* spp. in northern hilly areas of India. *Current Science*, 118(12), 1946-1952.
10. Reddy, P. P. (2021). *Nematode diseases of crops and their management*. Springer Singapore.
11. Miedaner, T., & Garbelotto, M. M. (2024). Human-mediated migration of plants, their pathogens and parasites. *Journal of Plant Pathology*, 106(2), 301-325.
12. Das, N., & Mahalik, J. (2024). Brinjal-rootknot and reniform nematodes. *Nematode Problems in Crops and Their Management in South Asia*. UK: Cambridge Scholars Publishing, 322-331.