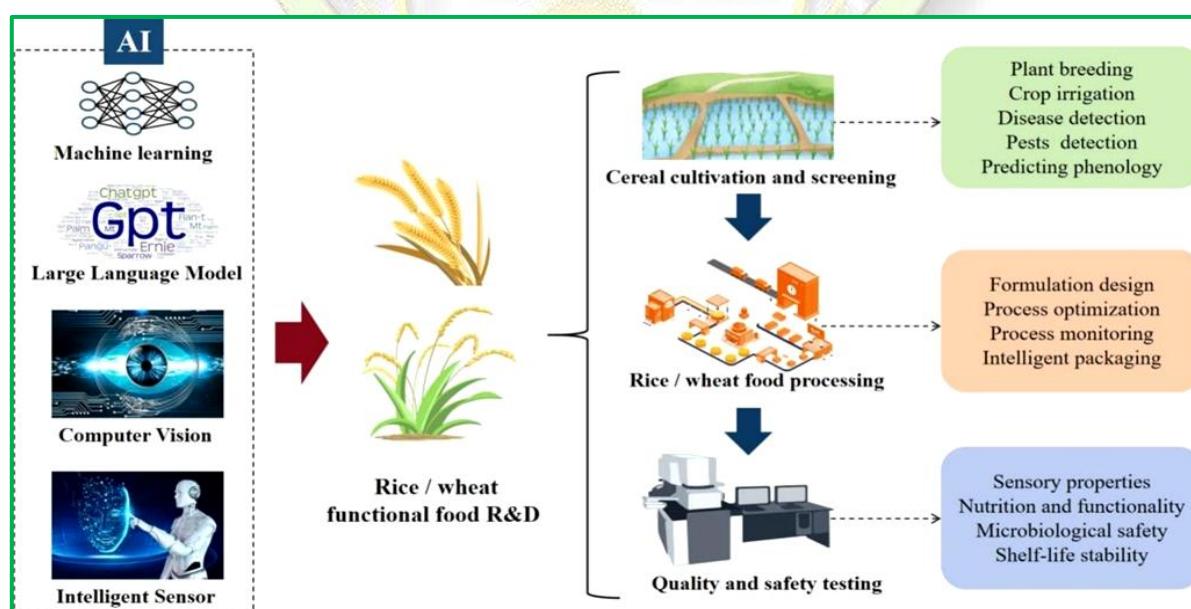


Machine Vision and AI-Enabled Rice Grain Maturity Detection for Precision Harvesting

*Jhalaknath Sharma¹, Kuldeep Saikia², Tanvi Rawal² and Iutran Passah³

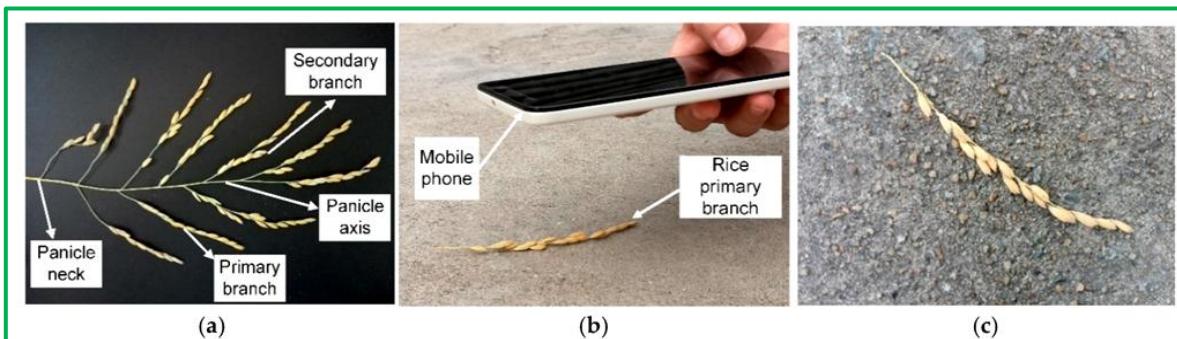

¹Dept. of Processing and Food Engineering, ICAR-Indian Agricultural Research Institute, Ranchi Hub

²Department of Genetics and Plant Breeding at ICAR- Indian Agricultural Research Institute, Ranchi Hub

³Dept. of Vegetable Science, ICAR- Indian Agricultural Research Institute, Delhi

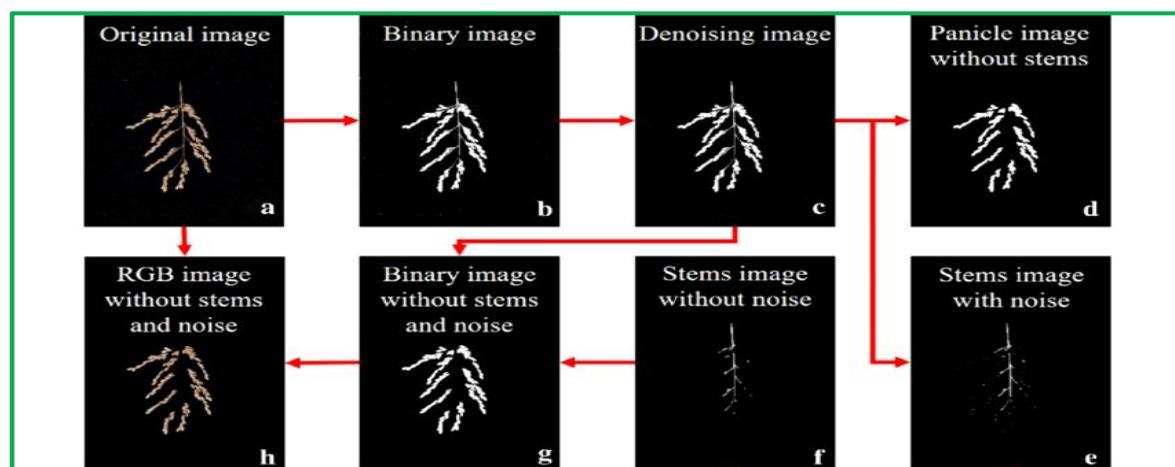
*Corresponding Author's email: jhalaksharmajnv@gmail.com

Rice harvesting is one of the most crucial stages in rice production, directly influencing grain quality, head rice recovery and overall profitability for farmers. Traditionally, farmers determine harvesting time based on visual judgment, experience and physical signs such as grain color, husk hardness or panicle dryness. However, these manual assessments are often subjective and can lead to either early harvesting resulting in higher moisture, immature kernels and increased breakage during milling or late harvesting, which increases the risk of shattering, pest damage and quality deterioration. With rapid advancement in digital agriculture, modern technologies such as machine vision, artificial intelligence (AI) and image processing are emerging as powerful tools to accurately assess rice grain maturity in real time. By analyzing grain color, texture, shape and moisture through high-resolution imaging and AI algorithms, these systems provide reliable decisions on the exact time to harvest. This helps farmers achieve better quality grain, reduce losses and enhance economic returns. Machine vision and AI-enabled maturity detection represent a major step toward precision harvesting, reducing dependence on guesswork and enabling data-driven decision-making. As agriculture moves toward automation, these technologies are becoming valuable not only for large-scale mechanized farming but also for small and marginal farmers through mobile apps, drones and smart sensor-based systems.

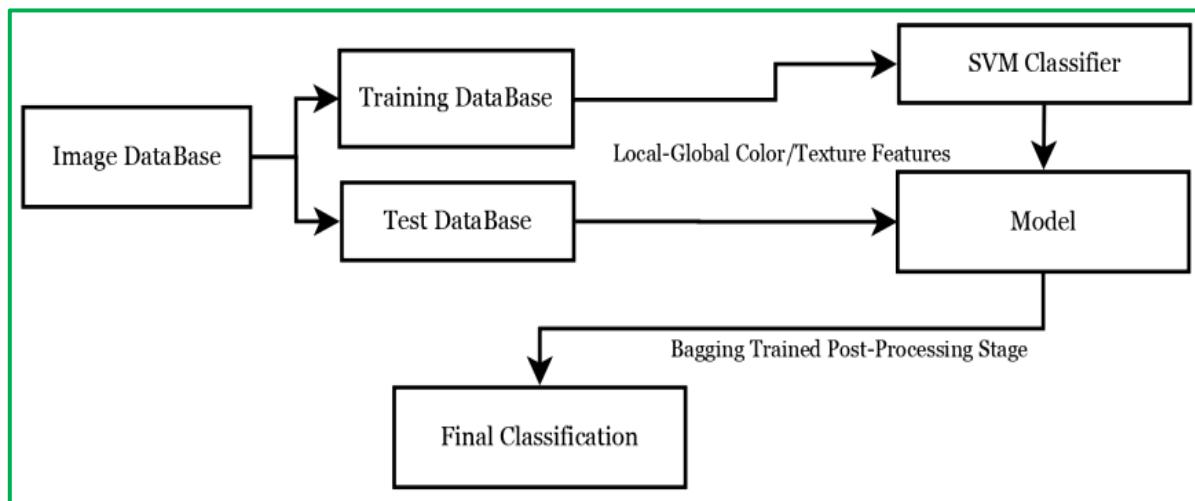

Importance of AI-Based Rice Maturity Detection

In most rice-growing regions, including India, farmers still depend largely on traditional and visual judgment to decide the right time for harvesting. They observe external features such as grain color change, panicle bending or feel the grain hardness by hand. Although these methods are familiar, they are often subjective and vary from person to person. As a result, rice may be harvested either too early, when the grains are still soft and contain high moisture or too late, when the grains become dry and are more likely to shatter and break during milling. Both situations lead to a direct reduction in yield, poor grain quality and lower market price. The introduction of machine vision and artificial intelligence-based maturity detection tools has the potential to overcome these long-standing challenges. By analyzing real-time images of rice panicles and grains, these systems can identify internal and external maturity indicators with high accuracy. This allows farmers to decide the ideal harvest window based on data rather than assumptions.

Methodology of Machine Vision and AI-Enabled Rice Grain Maturity Detection


The technology behind AI-based rice maturity detection uses a combination of digital image processing, machine learning models and sensor data to evaluate the maturity level of rice grains accurately. The process generally involves the following steps:

1. **Image Acquisition:** In the first stage, high-resolution images of rice panicles or grains are captured in the field using devices such as smartphone cameras, drones or RGB / hyperspectral imaging systems. These images record visible characteristics like color change, grain shape and panicle structure that are useful for assessing maturity.


Fig. 1 Illustration of the process of image capturing: (a) structure of a rice panicle; (b) rice primary branch and image taking with a mobile phone; (c) image captured showing the rice primary branch.

2. **Image Pre-Processing:** After image collection, the system processes the photographs to remove unnecessary background elements such as soil, sky, leaves and shadows. This step enhances clarity and isolates only the useful portion of the image for further analysis, improving detection accuracy.

Fig. 2. Flow chart of image preprocessing procedures. The scanner-acquired images of Japonica rice were used as an example

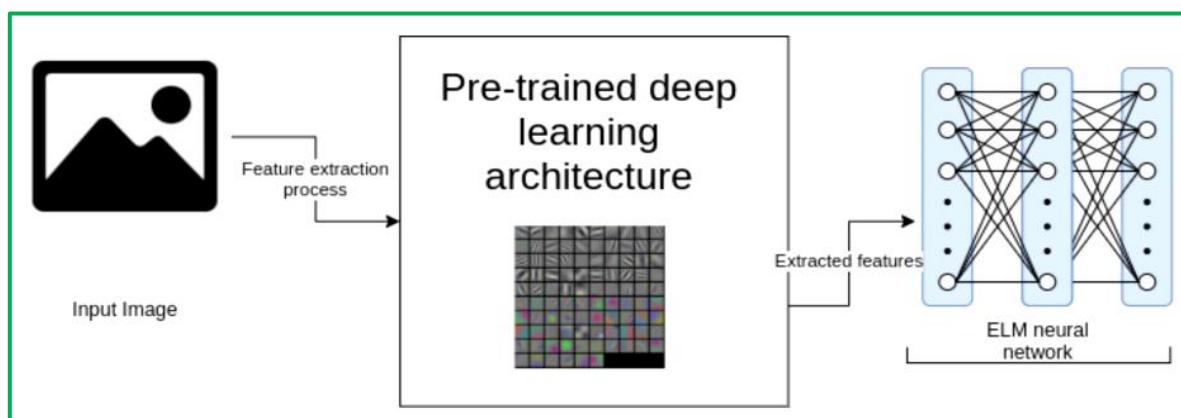

3. Feature Extraction: In this step, the machine vision system identifies and extracts key visual and structural features such as grain color values (RGB, HSV, LAB), texture quality, grain size and shape. For advanced imaging systems, internal moisture content or translucency characteristics are also recorded as indicators of maturity.

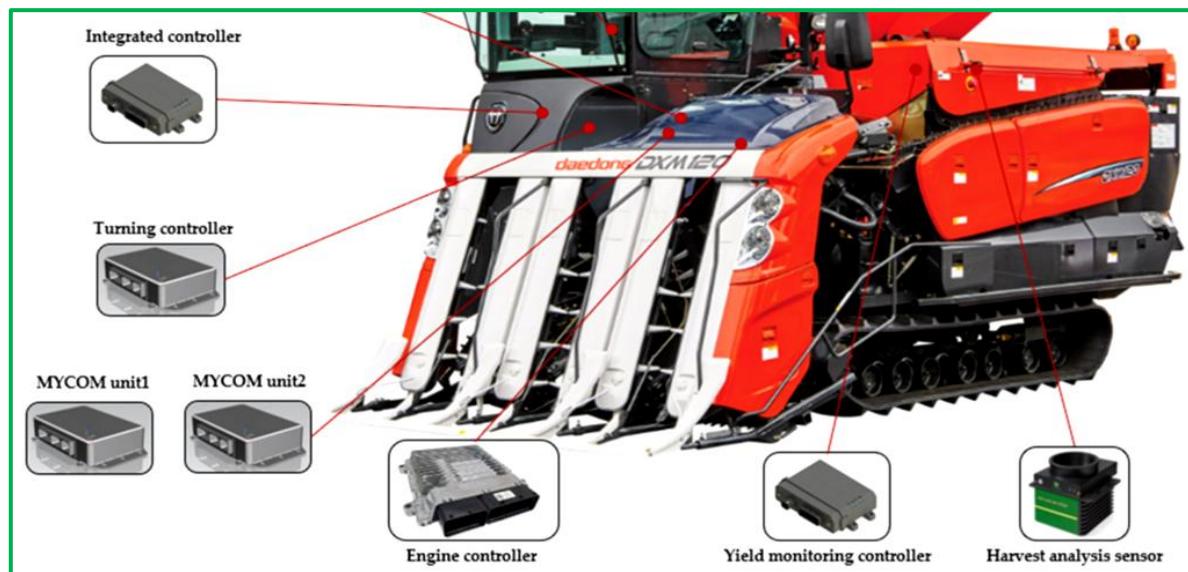
Fig. 3. Feature extraction of grain based on colour and textural

4. Model Training Using AI

The extracted features are then used to train machine learning or deep learning models like Convolutional Neural Networks (CNN), Support Vector Machines (SVM) or Random Forest algorithms. The model learns the differences between immature, optimally mature and over-mature grains by analyzing thousands of labeled sample images.

Fig. 4. Model training by using AI

5. Prediction and Classification


Once trained, the AI model evaluates new field images and automatically classifies the grains into maturity categories such as immature, optimum mature and over-mature. It also provides decision support by estimating the ideal harvesting time and predicting expected milling outcomes like head rice yield and breakage percentage.

6. Decision Support for Farmers

The final results are presented to farmers through mobile applications, dashboards or direct integration with harvesting machines. The system generates clear recommendations such as “Harvest immediately” or “Harvest in three days for best quality”, helping farmers avoid losses from early or late harvesting.

7. Integration With Smart Machinery

In advanced implementations, the system can be connected with automated combine harvesters, drones, IoT sensors and weather-based forecasting tools, enabling a fully synchronized precision harvesting system.

Fig. 5. Integrating the developed with automated combine harvester

How AI-Based Machines Detect Rice Grain Maturity and Assist in Harvesting

AI-enabled rice maturity detection machines use a combination of cameras, sensors and artificial intelligence to determine the optimal time for harvesting. High-resolution images of rice panicles are captured using drones, smartphones or cameras mounted on combine harvesters. These images record important indicators such as grain color, panicle bending, grain size and surface texture. The AI system then analyzes these features using machine learning algorithms trained on thousands of sample images to classify the grains as immature, optimally mature or over-mature. Once the maturity stage is detected, the system provides actionable recommendations to farmers. It can send alerts through mobile applications or directly control automated harvesters, adjusting cutting height and harvesting speed to minimize grain breakage and shattering. By continuously monitoring the crop, the machine ensures harvesting occurs at the best possible time, improving head rice yield, maintaining grain quality and increasing economic returns for farmers.

Table. 1. Top companies which develop AI base machine for rice maturity or harvest-time detection

Company	Key Technology	Working
DJI (Agras / Agriculture drones / Matrice series)	Agricultural drones + multispectral / RGB cameras + RTK / GNSS navigation	By equipping drones with multispectral or RGB cameras, DJI drones can capture periodic aerial images of rice fields. These images can be analyzed (via AI) for panicle color, grain-filling, canopy maturity, helping estimate optimal harvest time
Gamaya	Drone-based hyperspectral imaging for precision farming	Hyperspectral data can reveal subtle changes in grain moisture, chlorophyll degradation or ripening indicators not visible in RGB potentially useful for precise detection of rice maturity stage before harvesting
AgEagle Aerial Systems	Drone and aerial imaging solutions for crop monitoring	By using aerial images from AgEagle drones, models can monitor panicle development over time, count density, assess color / maturity distribution aiding timely harvest decisions

Conclusion

The integration of machine vision and artificial intelligence into rice harvesting marks a transformative shift toward precision agriculture. By leveraging high-resolution imaging, advanced feature extraction and AI-based predictive models, farmers can accurately determine

the optimal grain maturity, minimizing losses from premature or delayed harvesting. These technologies not only improve head rice yield and grain quality but also enhance economic returns, reduce labor dependence and support sustainable farming practices. With AI-enabled systems increasingly accessible through drones, mobile apps and smart harvesters, both large-scale and smallholder farmers can benefit from data-driven, real-time harvesting decisions. As rice cultivation continues to modernize, the adoption of AI-based maturity detection represents a crucial step toward smarter, more efficient and profitable farming.

References

1. Awate, P.L. and Nagne, A.D., 2025. Machine Learning Models for Crop Management. *AI and Data Analytics in Precision Agriculture for Sustainable Development*, pp.91-108.
2. Deng, R., Tao, M., Huang, X., Bangura, K., Jiang, Q., Jiang, Y. and Qi, L., 2021. Automated counting grains on the rice panicle based on deep learning method. *Sensors*, 21(1), p.281.
3. Rajkumar, M., Kumar, T.A., Kanimozhi, P., Dash, B.B., Chowdhury, S. and Patra, S.S., 2025, May. Sustainable Farming with AI-Driven Yield Prediction Models and Real-Time IoT Sensor Data. In *2025 6th International Conference for Emerging Technology (INCET)* (pp. 1-6). IEEE.
4. Sharma, N.K., Anand, A., Budhlakoti, N., Mishra, D.C. and Jha, G.K., 2024. Artificial intelligence and machine learning for rice improvement. In *Climate-Smart Rice Breeding* (pp. 273-300). Singapore: Springer Nature Singapore.
5. Wang, S., Liu, F., Gan, Z. and Cui, Z., 2016, October. Vehicle type classification via adaptive feature clustering for traffic surveillance video. In *2016 8th International Conference on Wireless Communications & Signal Processing (WCSP)* (pp. 1-5). IEEE.
6. Wu, W., Liu, T., Zhou, P., Yang, T., Li, C., Zhong, X., Sun, C., Liu, S. and Guo, W., 2019. Image analysis-based recognition and quantification of grain number per panicle in rice. *Plant Methods*, 15(1), p.122.
7. Zeng, F., Zhang, M., Law, C.L. and Lin, J., 2025. Harnessing artificial intelligence for advancements in Rice/wheat functional food Research and Development. *Food Research International*, p.116306.
8. <https://daedong>