

Trust on the Table: Blockchain and the Future of Safe Food

*Sreelakshmi P

Department of Food Science & Technology, School of Health Sciences,
University of Calicut-673635, Malappuram, Kerala, India

*Corresponding Author's email: sreelakshmiuc@zohomail.in

Food connects people, it fuels bodies, supports culture, and creates emotional meaning. Yet behind every fresh apple, carton of milk, spice packet or ready meal sits a vast and often invisible global supply chain. Food today travels farther than at any point in human history. Ingredients may originate in one country, be processed in another, packaged elsewhere and finally arrive on a shelf thousands of kilometres away. By the time food reaches a plate, it may have passed through farmers, processors, logistics centers, warehouses, certification bodies, customs agencies, retailers and sometimes multiple international borders. This complexity has brought both opportunity and vulnerability. While global supply chains make year-round access to diverse foods possible, they also increase uncertainty. Questions once answered by close community familiarity. *Where did this come from? Who produced it? Was it handled safely?* now require systems capable of managing millions of data points. Food recalls linked to contamination, adulteration scandals involving diluted milk or mislabelled seafood, counterfeit organic claims and spoilage during transport have made consumers more aware of how fragile trust in food systems can be. Blockchain technology, originally developed to secure digital currencies, is now gaining recognition as a tool capable of rebuilding transparency and confidence in the food chain. It does not change how food is grown or processed; instead, it changes how truth is recorded, tracked and accessed. In a world where information can be altered, lost, or manipulated, blockchain offers something valuable: a traceable, permanent and secure record of where food has been, who handled it, and how safely it moved. A world map showing in Figure 1, food ingredients travel across multiple supply chain steps before reaching consumers.

Figure 1. Global Food Supply Chain Complexity

Why Traditional Traceability Systems Fall Short

Traceability is not new. For decades, food companies have used barcodes, shipping documents, batch numbers, and temperature logs to support safety and compliance. While these systems function reasonably well at a small scale, they reveal significant weaknesses when multiple actors are involved. Paper-based records can be lost or tampered with. Databases used by different companies may not communicate with each other. When an incident occurs, such as contamination or mislabeling, it may take days, sometimes weeks, to identify the source. During that time, retailers may preemptively discard entire product lines, or authorities may issue broad recalls that affect safe products as well as contaminated ones. This inefficiency is not simply inconvenient; it can cost millions, damage brand reputation, and create unnecessary food waste. More importantly, slow tracing introduces risk to public health. The longer unsafe food remains available, the higher the chance it will be consumed. Blockchain addresses these shortcomings by ensuring data integrity and accessibility. Instead of storing information in separate systems controlled by individual companies, blockchain creates a shared record where each new entry is permanently linked to previous data. Once added, the information cannot be quietly edited or erased. The traceability becomes continuous, and data becomes a shared responsibility rather than a private asset.

How Blockchain Works in Food Systems

Blockchain may sound complex, but its value lies in a simple idea: once information enters the chain, it remains there securely and transparently. In practical terms, every step in a food product's journey from soil to supermarket can be verified. When farmers harvest crops, they record the event digitally. When processors receive raw material, they scan it, confirming origin, date, and handling conditions. If a product requires refrigeration, temperature sensors can automatically log conditions. Laboratory test results, certifications such as *organic* or *fair trade*, expiration dates and package-seal verification can be stored alongside movement records. Each data entry becomes a "block." The blocks are connected in chronological order, forming the "chain." No single participant can alter past entries without alerting the system, because blockchain is decentralized. Instead of having one owner, it distributes identical copies to all authorized users, creating a collective record of truth. To a shopper, the benefit may look simple: scanning a QR code and viewing where food originated, how long it travelled and whether it passed required testing. But behind that scan lies a transparent and tamper-proof system redefining how food safety is documented and verified. A simplified visual showing in Figure 2 a product moving through steps, with each step adding a secure data block.

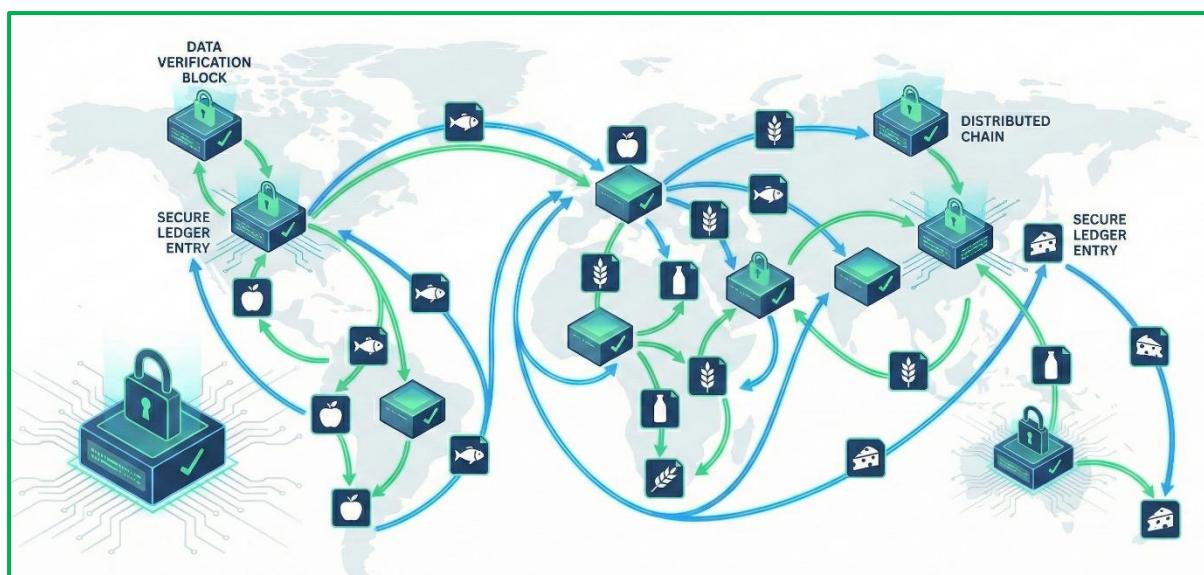


Figure 2. How Blockchain Records Food Data.

Blockchain as a Tool for Building Trust

Trust has long been assumed in food systems, but blockchain helps transform trust from assumption to evidence. It creates a structure where accountability is built into the process rather than retroactively enforced. For consumers, this could mean confidently identifying whether strawberries were sprayed with pesticides, whether honey is pure or mixed with sugar syrup, or whether seafood truly came from a certified sustainable fishery. For businesses, blockchain acts as protection against fraud and supply chain blind spots. Companies can verify claims made by suppliers, ensure ethical sourcing, validate cold-chain integrity, and quickly isolate quality issues. For governments and regulators, blockchain offers faster response capability. Instead of broad recalls, agencies can trace compromised products back to specific batches, farms, or storage facilities within minutes. As food systems increasingly compete on transparency rather than secrecy, blockchain supports a new value: confidence backed by proof. A conceptual image shown in Figure 3 a shopper scanning a product to view verified origin and safety details.

Figure 3. Consumer Scan Experience

Fighting Fraud and Counterfeiting

Certain food products face persistent fraud: olive oil diluted with cheaper oils, mislabeled seafood species, misrepresented spices and falsely labelled organic produce. These practices harm not only consumers but also honest producers. With blockchain, authenticity becomes easier to validate because labelling claims can be connected to verified data rather than marketing statements. If a product claims to be organic, fair trade, grass-fed, or protected geographical origin, blockchain provides proof of certification and processing steps. Each stage becomes visible and linked to a verified identity. In markets where trust has weakened, such as infant formula, honey, saffron or wine, blockchain may become a competitive advantage rather than a novelty.

Real-World Adoption and Progress

Large grocery retailers, logistics companies, and agricultural cooperatives have begun integrating blockchain systems into traceability platforms. Pilot studies in seafood have helped prove legal fishing status and prevent species substitution. Coffee cooperatives have used blockchain to allow buyers to trace beans back to small farms, supporting transparency and fair pricing. Meat processors and dairy supply chains have tested blockchain for temperature traceability, ensuring products remain within safe handling ranges throughout distribution. As early adopters demonstrate effectiveness, more sectors are exploring opportunities. Blockchain may soon become not just a tool, but an expected standard in high-value or high-risk food categories. A realistic visualization of blockchain dashboards used in a food processing facility is shown in Figure 4.

Figure 4. Blockchain in Action

Challenges and the Road Forward

Despite its potential, blockchain implementation is not without barriers. Some small producers lack access to digital devices or internet infrastructure. Training and standardization remain ongoing efforts. Blockchain systems also require agreement among stakeholders on how data is recorded and shared. Without interoperability, data could become siloed rather than unified. However, technological progress tends to move from costly and complex to accessible and expected. Over time, blockchain platforms are becoming more user-friendly, automated and affordable. Automated sensors and Internet-of-Things (IoT) devices may soon log data without human input, simplifying adoption even for small producers. What once seemed ambitious, a fully transparent food system, is gradually becoming achievable.

The Future: A Connected and Traceable Food Ecosystem

Blockchain's role in food processing is expected to expand further as it integrates with smart packaging, robotics, intelligent transportation systems and predictive analytics. Future supply chains may operate with real-time verification, eliminating weak points before they become failures. A carton of milk could monitor its own temperature history. Fresh produce could include embedded freshness indicators. Retailers may use blockchain-supported decision systems to reduce waste through dynamic expiration dates based on real handling conditions. For the consumer, this future will feel simple: a scan, a display, a choice made with knowledge. But silently behind that simplicity will sit a sophisticated network ensuring honesty, safety and accountability across every step of the food journey. A futuristic vision of a connected food supply with secure information exchange is shown in Figure 5.

Figure 5. Future Transparent Food Network

Conclusion

Trust has always been essential to food. For generations, it relied on relationships, familiarity, and confidence in people and processes that could be seen. Globalization changed the scale of food movement and with it, the way trust must be built. Blockchain is not simply a technology; it is a new architecture for transparency, one where safety, authenticity and accountability become provable rather than assumed. As adoption grows, blockchain may transform food systems in the same way refrigeration or pasteurization once did: quietly at first, then undeniably. Soon, when someone asks, “Can I trust what I’m eating?” the answer may no longer depend on belief but on verified truth recorded through every step from soil to table.

References

1. Aung, M. M., & Chang, Y. S. (2014). Traceability in a food supply chain: Safety and quality perspectives. *Food control*, 39, 172-184.
2. Behnke, K., & Janssen, M. (2020). Boundary conditions for traceability in food supply chains using blockchain technology. *International Journal of Information Management*, 52, 101969.
3. Galvez, J. F., Mejuto, J. C., & Simal-Gandara, J. (2018). Future challenges on the use of blockchain for food traceability analysis. *TrAC Trends in Analytical Chemistry*, 107, 222-232.
4. Kamilaris, A., Fonts, A., & Prenafeta-Boldú, F. X. (2019). The rise of blockchain technology in agriculture and food supply chains. *Trends in food science & technology*, 91, 640-652.
5. Lin, Q., Zhou, M., & Xu, X. (2020). Food safety traceability system based on blockchain and EPCIS. *IEEE Access*, 8, 155233–155243.
6. Tian, F. (2017). A supply chain traceability system for food safety based on HACCP, blockchain & Internet of things. In *2017 International conference on service systems and service management*, 1-6. IEEE.