

Mycorrhizal Fungi in Improving Nutrient Uptake in Vegetable Production

* Alok and Tikam Das Vaishnav

RNT College of Agriculture, Kapasan (MPUAT, Udaipur), Rajasthan

* Corresponding Author's email: aschoudhary113@gmail.com

Mycorrhizal fungi represent a vital group of beneficial soil microorganisms that establish a symbiotic association with the roots of most agricultural crops, including vegetables. The term *mycorrhiza* refers to a mutualistic relationship in which fungi colonize plant roots and extend their hyphae into the surrounding soil. This association significantly improves the plant's capability to absorb water and essential nutrients—especially phosphorus (P), nitrogen (N), zinc (Zn), copper (Cu), and other micronutrients. In vegetable production systems, where nutrient demand is high and soils often degrade over time, mycorrhizal fungi play a crucial role in improving plant health, productivity, and environmental sustainability.

Types of Mycorrhizal Fungi in Vegetable Crops

Among various types, **Arbuscular Mycorrhizal (AM) fungi** (formerly known as VAM fungi) are the most common in vegetable cultivation. Important genera include **Glomus**, **Gigaspora**, **Acaulospora**, **Scutellospora** and **Rhizophagus**. AM fungi form highly specialized structures such as:

- **Arbuscules** – Sites of nutrient exchange
- **Vesicles** – Storage organs
- **Extramatrical Hyphae** – Extended network for nutrient mining

These structures enhance nutrient uptake efficiency far beyond the root zone.

Mechanisms of Nutrient Uptake Enhancement

1. Increased Root Absorptive Area

Mycorrhizal hyphae extend deep into the soil, increasing the effective root surface area by 100–1000 times. This enables vegetables to explore larger soil volumes and access nutrients otherwise unavailable to roots.

2. Solubilization and Mobilization of Nutrients

AM fungi release enzymes and organic acids that solubilize **phosphorus**, **iron**, **zinc**, and other nutrients bound to soil particles. This process dramatically improves nutrient bioavailability in low-fertility soils.

3. Enhanced Nitrogen Uptake

Though AM fungi primarily assist in P uptake, they also improve nitrogen acquisition through:

- Increased root branching
- Assimilation of ammonium (NH_4^+)
- Better synchronization of N uptake with plant demand

4. Improvement in Water Absorption

AM fungi enhance water uptake and drought tolerance by:

- Increasing hydrated soil volume
- Improving osmotic balance
- Stimulating production of stress-related hormones

5. Improved Soil Structure

The fungal hyphae bind soil particles into aggregates, improving:

- Soil porosity
- Aeration
- Water infiltration

Benefits of Mycorrhizal Fungi in Vegetable Production

1. Enhanced Growth and Yield

Vegetables such as tomato, chilli, onion, brinjal, okra, cucumber, and leafy greens show:

- Higher plant height
- Increased leaf area
- Earlier flowering and fruiting
- Better fruit size and yield

2. Higher Nutrient Content in Produce

The enhanced uptake of P, Zn, Fe, and other elements improves the nutritional quality of vegetables, leading to:

- Higher vitamin and mineral content
- Improved taste and shelf life

3. Reduced Dependence on Chemical Fertilizers

AM fungi significantly reduce the requirement for phosphorus fertilizers. In many cases, **P application can be reduced by 25–50%** without compromising yield.

4. Better Resistance to Stress

Mycorrhizal vegetables show resilience against:

- Drought
- Soil salinity
- Heavy metal toxicity
- Soil-borne diseases (e.g., Fusarium, Pythium disease suppression)

5. Environmental Benefits

By reducing fertilizer dependency and improving soil health, mycorrhizae contribute to:

- Sustainable production
- Lower nutrient leaching
- Carbon sequestration
- Improved biodiversity

Application of Mycorrhizal Fungi in Vegetable Cultivation

1. Seed Treatment

AM fungal spores mixed with organic carriers (e.g., FYM, vermicompost) can be coated on seeds before sowing.

2. Nursery Application

Treating seedlings in plug trays or nursery beds ensures early root colonization, especially for tomato, chilli, brinjal, and cabbage.

3. Transplanting Dip

Seedlings can be dipped in AM fungal slurry before transplanting for effective establishment.

4. Soil Application

AM inoculum can be applied:

- In planting pits
- Along rows
- Mixed with compost

5. Drip and Fertigation-Based Applications

Granular or liquid formulations can be applied directly through irrigation systems.

Vegetable Crops That Respond Strongly to Mycorrhizal Inoculation

- Tomato
- Capsicum/Chilli

- **Brinjal**
- **Onion & Garlic**
- **Cucumber**
- **Pumpkin**
- **Okra**
- **Cabbage & Cauliflower**
- **Leafy Vegetables (spinach, lettuce)** These crops typically show significant improvement in P uptake, biomass, and yield.

Challenges and Limitations

- AM fungi require **living roots**, so they cannot be grown independently.
- Effectiveness depends on:
 - ✓ Soil P levels (very high P suppresses colonization)
 - ✓ Soil moisture and temperature
 - ✓ Crop species and fungal strain compatibility
- Commercial inoculum quality varies greatly.

Conclusion

Mycorrhizal fungi offer a powerful biological tool for enhancing nutrient uptake and improving vegetable productivity in sustainable farming systems. Their ability to increase the availability of key nutrients, enhance water uptake, improve soil health, and reduce chemical fertilizer dependency makes them essential for modern vegetable cultivation. Integrating mycorrhizal inoculation with good agronomic practices—such as organic amendments, balanced fertilization, and proper irrigation—can significantly improve yield, crop quality, and long-term soil fertility. As vegetable production demands continue to rise, AM fungi present an eco-friendly and cost-effective solution for achieving higher nutrient-use efficiency and sustainable agricultural growth.