



## Beyond GMOs: Why Gene Editing Is Facing a Regulatory Rollercoaster

Anish Dhiman<sup>1</sup>, Shiwani<sup>1</sup> and \*Pramod Kumar Meghwal<sup>2</sup>

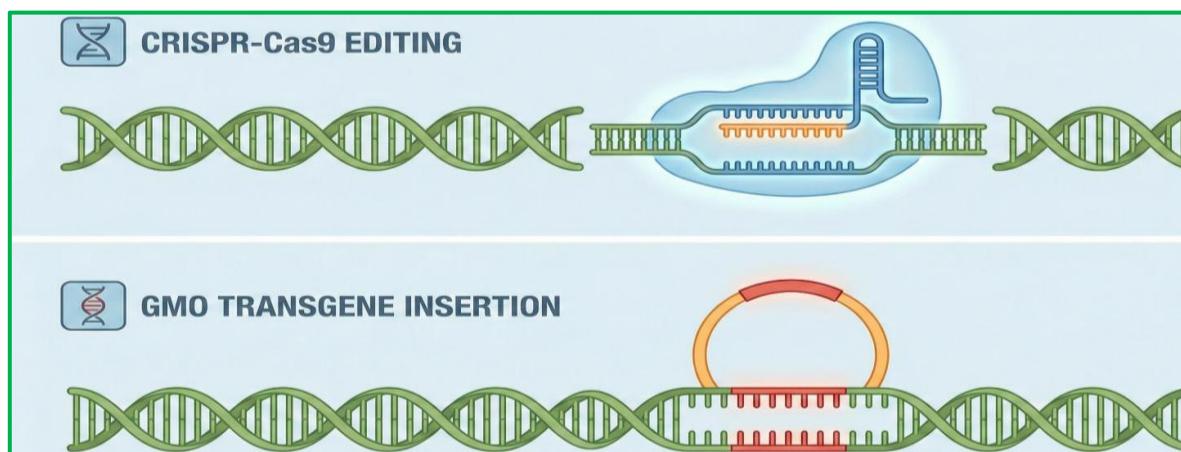
<sup>1</sup>Ph.D. Scholar, Dept. of Genetics and Plant Breeding, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishwavidyalaya, Palampur, Himachal Pradesh, India

<sup>2</sup>Ph.D. Scholar, ICAR- Indian Institute of Agricultural Biotechnology - 834010, Ranchi, Jharkhand, India

\*Corresponding Author's email: [pramodkumarmeghwal1998@gmail.com](mailto:pramodkumarmeghwal1998@gmail.com)

For decades, the debate over genetically modified organisms GMOs shaped global conversations about food, agriculture, safety and ethics. The very phrase "genetically modified" became loaded with emotion, often overshadowing the science behind it. Now, the world stands at the threshold of a new era in biological innovation, driven not by the older transgenic techniques that defined GMOs, but by precise gene-editing tools such as CRISPR. Gene editing offers the possibility of altering a single letter in a plant or animal's DNA without adding foreign genes, a level of accuracy that was unimaginable only a decade ago. With this precision has come excitement about better crops, improved health outcomes and more sustainable farming systems. Yet despite the scientific breakthroughs, gene editing has not entered the regulatory landscape smoothly. Instead, it has encountered a global patchwork of policy decisions, some supportive, others cautious and some outright restrictive. These inconsistencies have created what many experts call a regulatory rollercoaster, where the future of gene editing depends as much on politics and public perception as on scientific merit. Understanding why gene editing faces such uneven governance requires revisiting the history of biotechnology, exploring the unique features of CRISPR-based tools, and recognizing the social, cultural and ethical forces shaping regulatory decisions. Gene editing may carry fewer risks than older genetic modification methods, but its acceptance is not guaranteed. It is advancing faster than many governments can respond, forcing policymakers, scientists, farmers and consumers to rethink how to regulate life itself. An artistic visualisation is shown in Figure 1, gene editing technology positioned at the centre of conflicting regulatory pathways, symbolising the global uncertainty and mixed public perception surrounding CRISPR and modern biotechnology.




Figure 1. The Regulatory Rollercoaster of Gene Editing

## How We Got Here: The Shadow of the GMO Debate

To understand the regulatory turbulence surrounding gene editing, one must acknowledge the legacy of GMOs. Beginning in the 1990s, genetically modified crops entered global markets with unprecedented speed. Although they offered clear advantages drought tolerance, pest resistance, and herbicide compatibility, their rollout faced criticism for a lack of transparency, corporate control of seeds, and insufficient communication with the public. Because many GMO crops contained genes from unrelated species, scepticism grew about unnaturalness, safety and ecological consequences. Regulators responded differently. The United States adopted a product-based approach, evaluating risk based on characteristics rather than method. Europe took a precautionary stance, implementing strict restrictions and treating GMOs with greater scrutiny. Many countries in Africa and Asia vacillated between cautious approval and outright bans, often influenced by trade relationships and public sentiment. This fragmented history created a framework in which new biotechnology tools, including CRISPR gene editing are automatically compared with GMOs, even though the technologies differ significantly in accuracy, risk profile and intended outcomes. CRISPR's image is shaped not only by its science but by the emotional and political residue of the GMO era.

## Why Gene Editing Feels Different Scientifically and Socially

Gene editing represents a profound shift from the methods that defined traditional GMOs. Whereas older genetic engineering often inserted DNA from a different organism, such as adding a bacterial gene into a plant, CRISPR edits the plant's existing DNA. Some edits remove or silence a gene; others tweak a single nucleotide to mimic a natural mutation. The results are changes that could, in theory, have arisen through conventional breeding or spontaneous genetic variation, just far more efficiently. This scientific difference is central to the regulatory debate. Supporters argue that gene editing should not be regulated like GMOs because it does not necessarily introduce foreign DNA. Instead, it produces outcomes nearly indistinguishable from conventional breeding but achieved with remarkable precision. Opponents, however, worry that any modification at the molecular level, regardless of method, demands oversight because unintended effects may occur. Public perception further complicates matters. Many consumers struggle to distinguish between genetic modification and gene editing, seeing both as interventions in nature. While CRISPR is more precise, the emotional response can be similar. Concerns about corporate control, biodiversity, environmental impacts and food labelling remain powerful drivers of public opinion. A simplified illustration is shown in Figure 2, CRISPR editing a gene within the same species versus traditional GMO transgene insertion.



**Figure 2.** How Gene Editing Differs from GMOs

## A Global Patchwork: Why Regulations Differ So Widely

The true regulatory rollercoaster emerges when comparing how countries define and govern gene-edited organisms. Some nations adopt policies based on the end product if the final organism contains no foreign DNA, it is treated like a conventionally bred crop. Others regulate based on the process itself if a molecular tool is used, the organism falls under GMO legislation. In the United States, regulators such as the USDA have ruled that many gene-edited crops do not require special oversight if they could have been produced through natural mutations. Japan has taken a similar stance, allowing certain gene-edited foods into the market with minimal restrictions, provided they lack foreign genes. Brazil, Argentina, and other South American countries have also adopted product-based frameworks, encouraged innovation while maintained safety review systems. Europe, however, remains cautious. In 2018, the European Court of Justice ruled that gene-edited organisms must be regulated as GMOs, even if the edits do not involve transgenes. This decision effectively places CRISPR-edited crops under stringent, expensive, and slow-moving regulatory frameworks, a stance criticized by many scientists who argue that it stifles sustainable innovation. Meanwhile, countries across Africa and Asia are divided. Some see gene editing as essential for climate resilience and food security. Others fear that too much alignment with Western biotechnology could affect trade or raise sovereignty issues. The result is a world where a gene-edited tomato may be legal in one country, banned in another and unclassified in a third. This inconsistency shapes investment decisions, research priorities, seed development and the ability of farmers to adopt new technologies.

## Why Gene Editing Sparks Ethical and Social Tension

Gene editing raises not only regulatory questions but also deeper ethical ones. Some concerns mirror those of GMOs corporate consolidation, intellectual property control and environmental impact, but others are new. The precision and ease of CRISPR make it accessible in ways earlier technologies were not, raising fears about misuse or unintended consequences. For example, should edits that enhance nutritional traits be prioritized over those that merely improve shelf life? Who decides which traits are valuable and who will have access to them?

There is also a fear of widening global inequality. Wealthier countries may develop gene-edited crops with enhanced resilience or nutritional profiles, while others struggle to access or regulate them. Small farmers worry that gene editing may accelerate dependence on commercial seed companies unless policies protect their autonomy. Cultural and philosophical beliefs further shape acceptance. In some communities, altering plant or animal genomes even without adding foreign

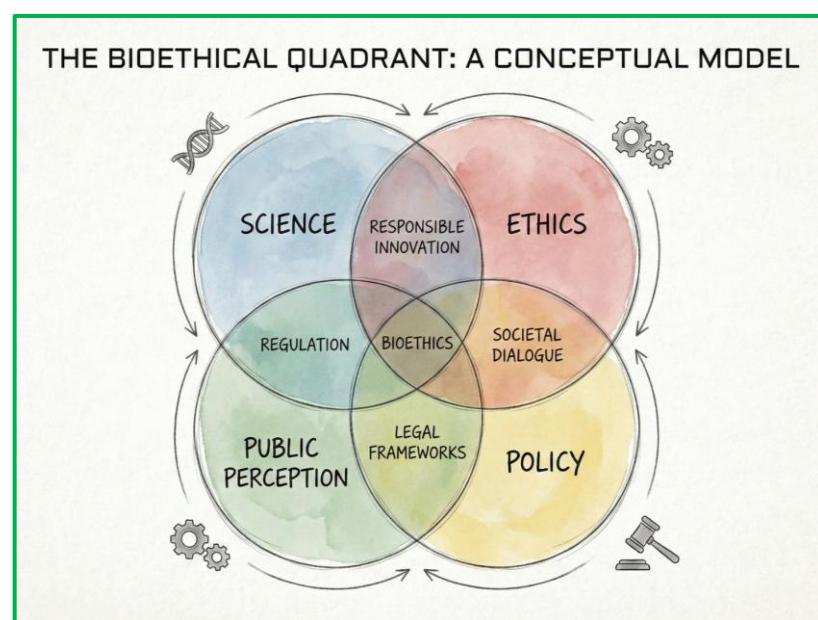



Figure 3. Ethical Landscape of Gene Editing

genes raises questions about manipulating natural life. In others, the ethical concern is not the act of editing but the consequences for biodiversity, food sovereignty and equitable access. These tensions make it difficult for policymakers to establish frameworks that balance innovation with precaution, scientific evidence with cultural values and global benefits with local concerns. A conceptual illustration is shown in Figure 3, intersecting themes of science, ethics, policy and society around gene editing.

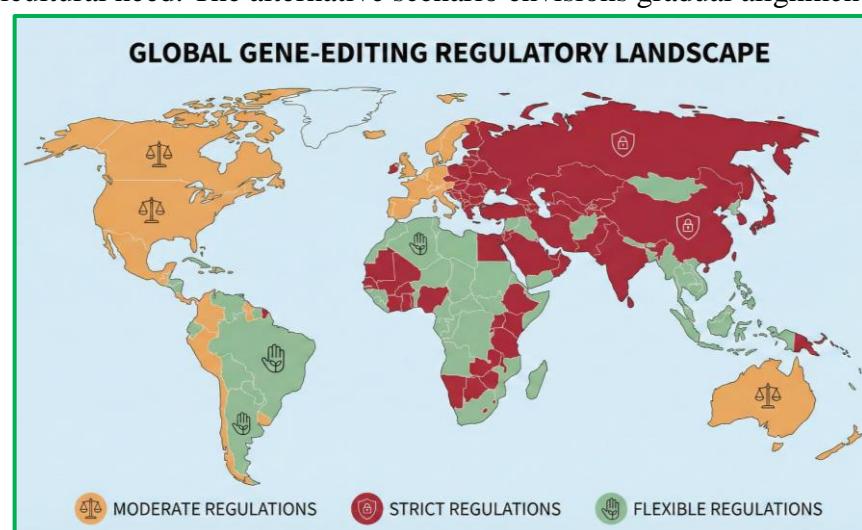
### Case Studies: When Policy Helps and When It Hinders

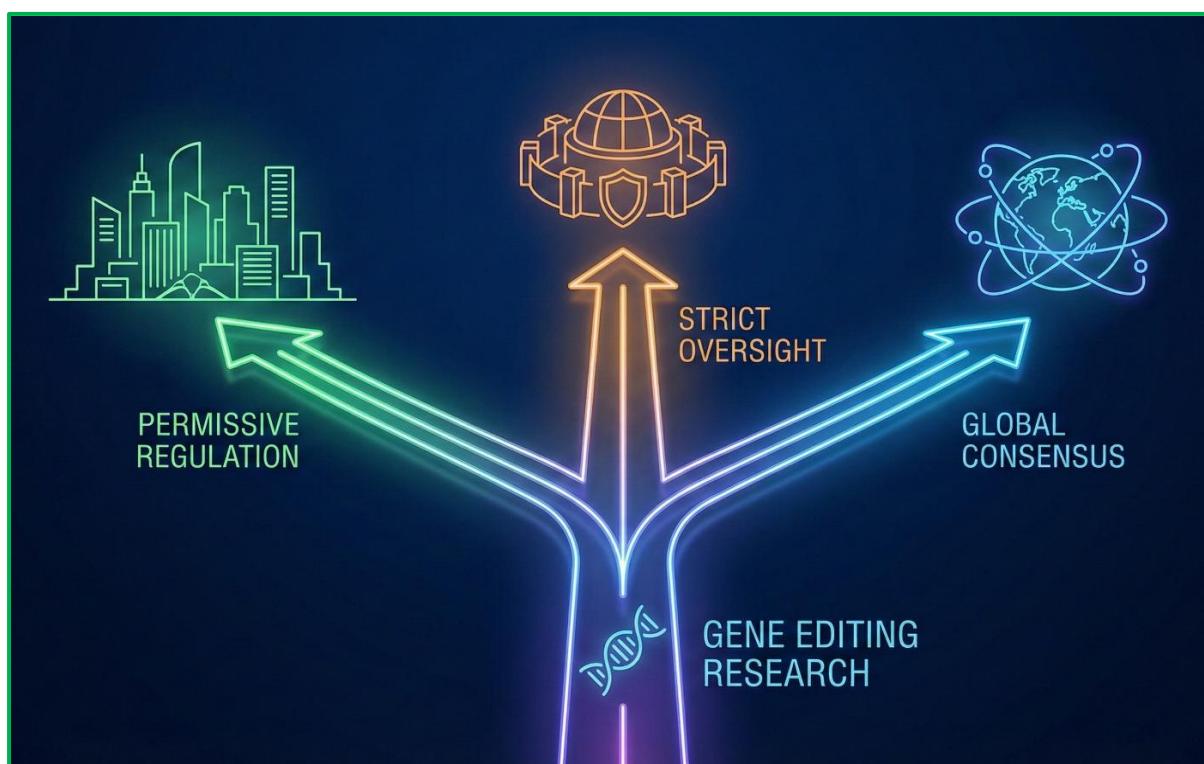
Real-world examples show how regulatory decisions shape progress. In Japan, consumers can already purchase a CRISPR-edited tomato enriched with GABA, a natural compound linked to stress reduction. The product reached markets quickly because Japan's regulatory system evaluates safety based on the final food composition rather than the editing method. In contrast, European researchers working on similar nutritional enhancements face many years of regulatory hurdles. The lack of flexibility drives scientists and businesses to relocate to regions with more supportive frameworks, causing a brain drain that affects European innovation. In the United States, gene-edited mushrooms and soybeans have moved through regulatory review rapidly, thanks to policies that distinguish gene editing from GMO transgenesis. Farmers may soon benefit from crops that resist disease or require fewer inputs, improving profitability and reducing environmental impact. These examples illustrate why gene editing's trajectory is uneven. Where regulation supports responsible research and practical deployment, innovation flourishes. Where it is restricted, progress stalls sometimes pushing technology development underground or across borders.

### A Future of Divergence or Global Alignment?

Looking forward, the regulatory landscape for gene editing could follow two very different paths. One scenario involves increasing divergence, where nations continue adopting vastly different policies. In this world, gene-edited crops and foods would move freely in some regions while being blocked in others. International trade would become more complicated, research collaborations fragmented and farmers' choices constrained by geopolitical boundaries rather than agricultural need. The alternative scenario envisions gradual alignment

based on shared scientific principles, transparent risk assessment and global dialogue. Many regulatory bodies now acknowledge that CRISPR edits mimicking natural mutations pose fewer risks than older GMO techniques. As more data becomes available and more gene-edited foods enter the





Figure 4. Global Gene Editing Policy Map

market, it is possible that policies will converge toward common standards emphasising product characteristics rather than process alone. Achieving global coherence will require not only scientific evidence but trust. Public engagement, ethical transparency, and clear

communication will be essential. The world has learned from the GMO debate that ignoring public concerns can delay technological progress for decades. This time, stakeholders have an opportunity to build a more constructive conversation. A conceptual visual shown in Figure 4, the differences in gene editing regulation across regions.

## Why the Regulatory Rollercoaster Matters

Regulation determines who gets access to gene editing, which crops reach farmers, and how quickly solutions to global challenges can be deployed. Climate change, soil degradation, emerging plant diseases and nutritional deficiencies demand urgent innovation. If regulatory systems delay the adoption of safe, beneficial gene-edited crops, agriculture will struggle to keep pace with these challenges. At the same time, regulation protects society from misuse, unintended ecological harm, or inequitable control of biological resources. The challenge is not to eliminate regulation but to calibrate it properly to balance scientific progress with responsible oversight. Gene editing does not fit neatly into the categories established during the GMO era. It is more precise, more natural in its outcomes, and more democratised in its accessibility. As long as regulations continue to treat it as a variant of older technologies, the world risks missing opportunities to improve food security, sustainability, and nutrition. The rollercoaster will continue until policymakers, scientists and society decide collectively how to define and manage gene-edited organisms based on evidence, ethics and shared goals rather than fear or outdated assumptions. A conceptual graphic is shown in Figure 5, diverging and converging paths representing potential regulatory futures.



**Figure 5.** Future Pathways of Gene Editing Governance

## Conclusion

Gene editing sits at a crossroads where science, policy and public perception intersect. It offers transformative possibilities for crops resilient to drought and disease, foods enriched with nutrients and sustainable farming systems with lower environmental impact. Yet its regulatory journey is far from straightforward. The world inherited a deeply polarized debate from the GMO era and CRISPR must navigate this terrain while defining its own identity.

Some nations embrace the technology enthusiastically; others treat it with caution. The result is a global regulatory rollercoaster, one that reflects not just scientific uncertainty but cultural, economic and ethical diversity. As the technology matures, the conversation must evolve as well. Regulations should protect society while enabling responsible innovation. They should reflect biological reality, not outdated assumptions. And they must involve transparent dialogue among scientists, consumers, farmers and policymakers. The future of gene editing will not be determined in laboratories alone. It will be shaped by governance systems that understand the technology's potential, acknowledge its risks and respect the values of the communities it serves. Navigating this rollercoaster will be challenging but essential if gene editing is to fulfil its promise in feeding the world, sustaining ecosystems and advancing agriculture into a new era of precision.

## References

1. Huang, S., Weigel, D., Beachy, R. N., & Li, J. (2016). A proposed regulatory framework for genome-edited crops. *Nature Genetics*, 48(2), 109-111.
2. Jaganathan, D., Ramasamy, K., Sellamuthu, G., Jayabalan, S., & Venkataraman, G. (2018). CRISPR for crop improvement: An update review. *Frontiers in Plant Science*, 9, 985.
3. Qaim, M. (2020). Role of new plant breeding technologies for food security and sustainable agricultural development. *Applied Economic Perspectives and Policy*, 42(2), 129-150.
4. Sprink, T., Eriksson, D., Schiemann, J., & Hartung, F. (2016). Regulatory hurdles for genome editing: process-vs. product-based approaches in different regulatory contexts. *Plant cell reports*, 35(7), 1493-1506.
5. Vora, Z., Pandya, J., Sangh, C., & Vaikuntapu, P. R. (2023). The evolving landscape of global regulations on genome-edited crops. *Journal of Plant Biochemistry and Biotechnology*, 32(4), 831-845.