

The Digital Revolution in Agriculture

Farhat Jahan¹, *Priyadarshini Sanghamitra¹, Manoj Patra¹, Sutapa Sarkar¹, Nabaneeta Basak², Gaurav Kumar², Sushant Kumar Dash¹ and Jitendriya Meher¹

¹Crop Improvement Division, CRRI, Cuttack, India

²Crop Physiology and Biochemistry Division, CRRI, Cuttack, India

*Corresponding Author's email: p.sanghamitra1@gmail.com

The modern agricultural innovations include considerable changes in agriculture through the power of technology and the right practices. One of the factors that contribute to such a big change is the use of technology in agriculture, which has made the processes more efficient, required less resources, and made the farms more resilient to climate changes thereby securing the food supply of an ever-increasing global population.

Precision Agriculture

Precision Agriculture (PA) involves a high-technology approach by which GPS systems alongside other tools like satellites, aerial drones, sensors, and images are employed to make proper diagnosis of crop, soil, and meteorological conditions for different parts of the field. Thus, he/she will be able to administer the inputs of water, fertilizers, and insecticides in accordance with the selected areas that would yield the most with the least environmental impact. It operates on the site-specific management (SSM) conception that boils down to doing the right thing at the right place and at the right time. Although this is an age-old idea, its implementation was interrupted by the mechanization of agriculture in the 20th century which led to the planting of uniform crops across large areas. SSM is now automated by Precision farming which uses IT to make it practicable for large-scale farming. PA comprises those practices that employ IT to customize the input usage or monitor the results, such as Variable Rate Application (VRA), yield monitors, and remote sensing (Bongiovanni & Lowenberg-DeBoer., 2004).

Lowenberg-DeBoer and Swinton denoted SSM as “the use of electronic monitoring and control in the whole process of data collecting, information processing, and decision-making which allows for the temporal and spatial distribution of inputs in crop production”; thus, while their application is limited to agronomic crops, the same principles can be extended to horticulture and electronic tagging of animals (Lowenberg-DeBoer & Swinton., 1997). The temporal SSM controller changes the quantity of input according to the lifecycle of the crops or livestock, or even pests, which is commonly called developmental stage (DS) information (Swinton., 1997). For instance, pest control techniques rely on the combination of pest scouting to find out the necessity and timing of the control. DS management is likewise applied in livestock management, where sensors monitor the production and health of individual animals (Swinton., 1997).

Biotechnology and Genetic Engineering

Plant biotechnology through GM and other means has resulted in the development of crops with better qualities, like the resistance to pests, diseases, drought, or salinity. Consequently, there is a potential for increased yield and lesser reliance on chemical inputs. Genetic engineering (ge) is a process that changes an organism's inherited characteristics by means of natural or laboratory cloning and tries to add new functions by gene transfer, replication, or correction (Uzogara., 2000; Ulucay et al., 2022). For instance, the creation of higher saline-resistant plants for saline soils (Khoo et al., 2023) or the development of pathogen-resistant plants for a healthier and more productive yield. In the same manner, genetic engineering can produce more disease-resistant or dairy cattle that yield more milk or meat (Kumar et al., 2023).

Vertical Farming and Controlled Environment Agriculture

The practice of running crops indoors in controlled environments or vertically stacked layers along with hydroponics or aeroponics, is what this method is all about. It saves space, uses less water, and makes it possible to produce crops all year round in cities. The idea got wider acceptance due to Dickson Despommier (2010) who recommended growing food in urban vertical towers using soilless farming technology which would ensure food security, transportation costs, and pollution would be minimal (Specht et al., 2014). Vertical farming (VF) happens on several levels or building surfaces and it can be practised using soil-based and soilless methods such as hydroponics or aquaponics (Despommier., 2013; Zeidler & Schubert., 2015; Al-Kodmany., 2018).

Robotics and Automation

Planting, harvesting, monitoring and livestock management are some of the areas in which robots and automated systems are being utilized, thereby providing the benefits of increased efficiency, lower labour costs, and higher accuracy. Automation in precision agriculture and robotics are major frameworks in limiting ecologic harm and at the same time increasing product output. Mobile robots for tasks like planting, inspection, spraying, and harvesting have been the subjects of a lot of research. The development of efficient and cost-effective systems will need to be done if these systems are to be widely adopted in the future, which is the main challenge ahead.

Big Data and Analytics

Collecting, analysing, and interpreting large volumes of data related to farms, equipment and supply chains is what big data and analytics are all about. Data from all three areas would be used to inform decisions in crop management, resource allocation and market opportunities. In India, for instance, where agriculture is a major contributor to GDP and employment, big data technologies are considered an indispensable part of the not-so-easy task of producing enough sustainable food for a population that is coming up fast (Singh., 2019). Information technology being one of the key drivers, is expected to cause digitization in the agricultural sector.

Internet of Things (IoT)

The IoT infrastructures made up of sensors and actuators take charge of gathering direct information such as the soil's moisture, temperature and the health state of the plants for the purpose of carrying out correctly the irrigation, nutrient application etc. Monitoring. The wireless network (Zigbee) and microprocessor technology advancements made it possible for

a stable remote data transfer and control to be integrated. In rich countries, the satellite and IoT systems make possible the precise field monitoring and control, which is sometimes even more effective with AI and expert systems to support (Liu., 2016). The system in China is used for various purposes including irrigation, environmental monitoring and testing, where high-tech monitoring and diagnostic equipment is employed (Shan., 2019).

Blockchain Technology

The adoption of blockchain in agriculture gives a significant positive impact in terms of the supply chain through its transparency and traceability. All these effects together lead to creating a fairer pricing system through the verification of food origin from the farm to the table of consumers, which also ensures food safety and quality control. ICT significantly improves the data effectiveness in agriculture and thus the farmers make better decisions (Walter et al., 2017). Smart farming systems that utilize IoT and blockchain have been developed, e.g., IoT sensors in a greenhouse may work as a private blockchain (Patil et al., 2017), and larger frameworks employ blockchain to create trust between the actors in the supply chain (Lin et al., 2018). Some of the companies, like Filament, make the devices connected to the blockchain and organizations resort to using blockchain for public interactions and data management (Lin et al., 2017).

Drones and Unmanned Aerial Vehicles (UAVs)

UAVs with the ability to take aerial pictures and their sensors detect and analyse crop health, pests, and soil conditions. They have been in use in developed countries being the most popular application for precision agriculture and thus helping with the productivity of crops and the cutting down of the farmers' work. The UAVs can be outfitted with multi-spectral cameras that allow them to scan the entire area of the field so that the problems can be spotted and dealt with before they become serious. Remote sensing at low altitude has the advantages of being very mobile and providing high-resolution images. The development of precision agriculture is going to be highly dependent on the availability of UAVs combined with the technology of sensors, IoT, machine learning, and decision-support systems.

Mobile Applications

Farmer-friendly apps give weather forecasts, market prices, and expert advice, which improves the decision-making and connectivity. They are solving the problems caused by the lack of information, poor market linkages, and inefficient crop management, thus creating a more productive and adaptable agricultural ecosystem (Singh et al., 2023; Kareska., 2023; Rahman et al., 2020; Ferroni & Zhou., 2012; Qiang., 2012; Bhaskara & Bawa., 2021).

Autonomous Tractors

Robotic tractors are equipped with AI, robotics, cameras, and GPS to make them driverless and fully human-less, and they are also the ones optimizing efficiency while reducing labour costs and making safety better. Tractors can perform mowing and spraying like tasks by themselves, while ADAS assists in the row-centering operation. Now, the leading tractor companies are inviting the public to come and see their commercial GPS-navigated, obstacle-detecting, and remotely monitored tractors. Accepting and applying these innovations is a key factor in the path to sustainable agriculture in the 21st century. They are the transition from traditional farming to a new, data-based, and highly efficient system that ensures food supply for the future and still is eco-friendly.

Conclusion

Modern agricultural innovations are transforming the global food system by integrating advanced technologies with sustainable practices. From precision agriculture and biotechnology to automation, IoT, and blockchain, these tools collectively enhance productivity, reduce resource consumption, and strengthen resilience against climate change. Techniques such as vertical farming, controlled-environment agriculture, and UAV-based monitoring further expand the possibilities for efficient, year-round food production, even in urban or resource-limited environments. Digital advancements—including big data analytics, mobile applications, and autonomous machinery—empower farmers with real-time insights, improved decision-making, and greater operational efficiency. Together, these innovations mark a decisive shift from traditional methods toward a data-driven, technologically enriched agricultural system that not only meets the rising food demands of a growing population but also supports environmental sustainability and long-term food security.