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he world population is expected to reach approximately 9 to 10 billion by 2050; 

therefore, a gain of around 25–70% above present-day production levels will be required 

to meet these burgeoning population demands (Hunter et al. 2017). Further, various biotic 

and abiotic factors cause adverse environmental conditions or stress for crop plants, resulting 

in a significant reduction in their yields. This significant reduction in crop yield due to stress 

can jeopardize global food security (Strange and Scott 2005). Enhancement of crop yields is 

an ever-changing global challenge for plant breeders, entomologists, pathologists, 

physiologists and farmers. Hence, an in-depth understanding of plant stress is pivotal for 

improving yield protection for sustainable production systems (Pessarakli 2019). Plant 

scientists rely on crop phenotyping for precise and reliable trait collection and utilization of 

genetic resources and tools to accomplish their research goals. 

Phenotyping 
Plant phenotyping is defined as the comprehensive assessment of complex traits of plants 

such as development, growth, resistance, tolerance, physiology, architecture, yield, ecology, 

and the elementary measurement of individual quantitative parameters that form the 

foundation for complex trait assessment (Li et al. 2014). Breeding programs generally aim to 

phenotype large populations for numerous traits throughout the crop cycle (Sandhu et al. 

2021). This phenotyping challenge is further aggravated by the need to sample at multiple 

environment with replicated trials. Traditional phenotyping is very costly, laborious, 

destructive, and could decrease the significance or preciseness of the results. The 

development of automated, high throughput phenotyping (HTP) systems merged with 

artificial intelligence has largely overcome the problems linked with the contemporary state-

of-the-art crop stress phenotyping. HTP has offered great potential for non-destructive and 

effective field-based plant phenotyping. Manual, semi-autonomous or autonomous platforms 

furnished with single or multiple sensors record temporal and spatial data, resulting in large 

amounts of data for storage and analysis (Kaur et al. 2021; Sandhu et al. 2021b). For the 

analysis and interpretation of these massive datasets, machine learning (ML) and its subtypes, 

i.e. deep learning (DL) approaches, are utilized (Sandhu et al. 2021a). 

High-throughput phenotyping 
High-throughput phenotyping (HTP) in plant breeding uses automated systems with sensors 

and imaging to rapidly and accurately collect trait data from large plant populations, 

replacing slow, manual methods. This allows for faster selection of improved crop varieties 

with traits like yield, stress tolerance, and disease resistance by enabling breeders to evaluate 

more plants with greater precision.  
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Principle 
 Automated platforms: HTP utilizes automated platforms, such as those on drones, that 

can move across fields. 

 Advanced sensors: These platforms are equipped with a variety of sensors, including 

RGB cameras, hyperspectral and multispectral sensors, and near-infrared sensors. 

 Data collection: These systems can capture detailed data on plant characteristics, 

including canopy height, biomass, and coverage, often from a non-destructive viewpoint. 

 Data analysis: The collected data is processed using advanced software, sometimes 

incorporating AI and machine learning, to analyze traits like stress response, disease 

resistance, and yield.  

Key benefits for plant breeding 
 Accelerated progress: HTP significantly speeds up the breeding cycle by allowing 

breeders to evaluate more genotypes than possible with traditional methods. 

 Increased accuracy: By providing more precise and objective data, HTP enhances the 

accuracy of selecting the best performing plants. 

 Evaluation of difficult traits: It enables the measurement of traits that are hard to 

quantify manually, such as subtle variations in plant morphology or internal quality 

attributes. 

 Sustainability: HTP contributes to the development of more resilient crops that require 

fewer resources like water and fertilizer. 

 Better data management: The resulting digital data can be easily stored, shared, and re-

analyzed, improving the reproducibility of research findings and facilitating 

collaboration. 

Phenotyping Platforms 
The area of plant stress phenotyping is steadily progressing, with destructive, low throughput 

phenotyping protocols/methods being substituted by non-invasive high-throughput methods 

(Barbedo 2019). Expeditious developments in non-invasive affordable sensors and imaging 

techniques and tools over the decades have transformed plant phenomics. Moreover, these 

developments have brought harmony between the sensors, imaging techniques and analytical 

tools. This consonance has led to the development of one-piece compact imaging platforms 

for HTP studies. Several HTP platforms exist and are presently employed to phenotype 

different biotic and abiotic stress-associated traits in various crops (Table 1). 

Table 1. Details of some selected imaging platforms used for trait phenotyping for biotic 

and abiotic stress and other morphological traits in crops (Gill et al., 2022) 

Platform Traits recorded Crop References 

A. Biotic and abiotic stresses 

PHENOPSIS Plant responses to water stress 

Arabidopsis 

(Arabidopsis 

thaliana) 

Granier et al. 

(2006) 

PHENODYN 

Soil water status (drought 

scenarios), leaf elongation rate, 

and micrometeorological variable 

Rice (Oryza sativa) 

and 

maize (Zea mays) 

Sadok et al. 

(2007) 

Field monitoring 

support system 

Occurrence of the rice bug in the 

field 
Rice (Oryza sativa) 

Fukatsu et al. 

((2012) 

LemnaTec 3D 

scanalyzer system 
Salinity tolerance traits Rice (Oryza sativa) 

Hairmansis et 

al. (2014) 

RADIX 

Root and shoot related traits under 

control and as well as stress 

conditions 

Maize (Zea mays) 
Le Marié et al. 

(2016) 

PhenoImage Plant responses to water stress 

Wheat (Triticum 

aestivum), sorghum 

(Sorghum bicolor) 

Zhu et al. 

(2021) 
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B. Morphological and physiological traits (recorded under unstressed conditions) 

High-throughput 

rice phenotyping 

facility (HRPF) 

Agronomic traits Rice (Oryza sativa) 
Yang et al. 

(2014) 

Zeppelin NT aircraft 
Leaf area index, leaf biomass, 

early vigour, plant height 
Maize (Zea mays) 

Liebisch et al. 

(2015) 

Phenocart Morphological traits 
Wheat (Triticum 

aestivum) 

Crain et al. 

(2016) 

Phenobot 1.0 Biomass-related traits 
Sorghum (Sorghum 

bicolor) 

Salas 

Fernandez et 

al. (2017) 

PhenoRoots Root related traits 
Cotton (Gossypium 

hirsutum L.) 

Martins et al. 

(2020) 

 Data has also been recorded in an automated and high throughput manner for root and 

shoot related traits, leaf traits, plant height, plant biomass, early vigor, radiation use 

efficiency, photosynthesis in different plant species such as rice, wheat, maize, sorghum 

(Sorghum bicolor L.), cotton (Gossypium hirsutum L.), Arabidopsis, Brachypodium 

(Brachypodium distachyon L.), rapeseed (Brassica napus L.), and barley (Hordeum vulgare 

L.) among others using different phenotyping platforms such as RootReader3D (Clark et al. 

2011), GROWSCREEN-Rhizo (Nagel et al., 2012), Zeppelin NT aircraft (Liebisch et al. 

2015), Phenocart (Crain et al. 2016), Phenovator (Flood et al. 2016), PHENOARCH (Brichet 

et al. 2017), Field Scanalyzer (Virlet et al. 2016), CropQuant (Zhou et al. 2017), and MVS-

Pheno (Wu et al. 2020). These platforms have the potential to be utilized for HTP of traits 

associated with stress tolerance/resistance in different crops. 

Imaging Techniques 
Phenomics has been extensively used to monitor diseases, pest infestations, drought stress, 

nutrient status, growth, presence of weeds and yield under stresses and normal conditions in 

different crop species (Barbedo 2019). Technological advancement has made novel imaging 

techniques available for use in HTP. Imaging techniques range from handheld mobile phones 

to highly flexible drone imaging using unmanned aerial vehicles (UAV). UAVs offer a 

platform that rapidly records data using different imaging sensors over large areas and 

potentially gives images with high spatial resolution. UAV can be used to cover plots or 

multiple fields in one flight, but their limited battery capacity reduces their utility for very 

large-scale HTP. Numerous studies have been conducted where drone imaging is used to 

assess biotic and abiotic stresses in plants. Some of these are provided in Table 2. 

Table 2. Different imaging techniques used for plant stress phenotyping. (Gill et al., 2022) 

S.No. 
Imaging 

techniques 
Remarks Disadvantage References 

1. Satellite Imagery 

Easily covers very 

large areas 

The data can easily 

help predict droughts 

and epiphytotics 

as very large areas 

can be covered at the 

same 

time 

High cost associated 

with constructing 

and launching 

satellites. 

Wheat yield (Fieuzal et 

al. 2020), cotton yield 

(He and Mostovoy 

2019) 

2. 
Mobile 

Cameras/Imaging 

Convenient, portable 

Rapid and no 

operational cost 

Taking pictures of 

each plant in the 

field is not practical 

Iron deficiency 

chlorosis severity in 

soybean(Naik et al. 

2017), salinity stress 

tolerance (Awlia et al. 

2016) 
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3. UAV Imaging 

UAVs (Unmanned 

Aerial Vehicles) can 

cover large areas, 

Very economical, 

High resolution data 

and Easy to operate 

with low learning 

curve 

They cannot cover as 

much spatial area as 

satellites because of 

their limited battery 

capacity and flight 

height. 

Grain yield wheat 

(Hassan et al. 2019), 

Plant Nitrogen content 

(Camino et al. 2018), 

wheat biomass (Yue et 

al. 2017), maize yield 

(Maresma et al. 2016), 

4. 
Imaging using 

robots 

Most advanced 

technique and 

Highly efficient as it 

provides human-like 

manual phenotyping 

results 

Still an evolving 

technique 

Much work required 

for workflow and 

data management 

Plant architecture (Qiu 

et al. 2019), Heat stress 

and stripe rust 

resistance wheat 

(Zhang et al. 2019), 

Spectral Indices for Plant Stress Phenotyping 
Images captured by the aforementioned techniques need to be decoded, and spectral indices 

(SIs) are used to assess the information in these images (Hunt et al. 2013). SIs involve 

conducting various sets of operations on different spectral layers of an image. These sets of 

operations include some mathematical calculations and combination of spectral reflectance 

from two or more wavelengths. The result of this mathematical combination generates a 

number that denotes the relative abundance of the feature of interest (Jackson and Huete 

1991). 

Conclusion 
Plant stress phenotyping is an important parameter for predicting crop losses caused by 

various biotic and abiotic stresses. It can be used to identify superior disease resistant and 

stress-tolerant genotypes as well as to assess disease management decisions. The phenotypic 

parameters include not only morphological data, but also a large number of physiological and 

biochemical data, as well as deeper mechanistic data, allowing scientists to identify and 

predict heritable traits through controlled phenotypic and genotypic studies. Current methods 

for stress severity phenotyping are used at various scales, such as the number of plants 

affected or exact counts of lesion numbers, or estimates of the severity or surface area 

affected by a particular biotic/abiotic stress at the canopy of single plant and field levels. 

More research is needed in the future to improve UAV-based sensing for plant phenotyping. 

High-performance and low cost UAVs should be introduced in future studies. For long-term 

and large-field plant phenotyping, high-performance UAVs with high flight stability, 

precision, long flight duration, and heavy payload are required. Unlike ground-based 

phenotyping, UAV-based phenotyping is afflicted by a serious issue: the safety of the UAV 

and its sensors. With the need to double food production to feed the projected population of 

10 billion by 2050, high throughput plant phenotyping technology are the other new breeding 

innovations which are essential tools to ensure food security in future. 
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