parde de de de de Ao de Ao Ao Ao e Ae e e Ao e e A Ae e e A e A U U U O Or Ur Ov dv dv dv dv de de de Ao 1o e e dr Or O de de de Ae Ae e e Or

gl gftnticles

(e-Magazine for Agricultural Articles)

Volume: 05, Issue: 06 (NOV-DEC, 2025)
Available online at http://www.agriarticles.com
°Agri Articles, ISSN: 2582-9882

Role of High Throughput Phenotyping in Crop Improvement
"R. Muthuvijayaragavan® and E. Murugan?

!Senior Research Fellow, Department of Plant Biotechnology, Centre for Plant
Molecular Biology and Biotechnology, Tamil Nadu Agricultural University,
Coimbatore, Tamil Nadu, India - 641003
2Professor (Plant Breeding and Genetics) and Head, Agricultural Research Station,
TNAU, Paramakudi, Tamil Nadu, India- 623707
“Corresponding Author’s email: muthu.ragavan@gmail.com

he world population is expected to reach approximately 9 to 10 billion by 2050;

therefore, a gain of around 25-70% above present-day production levels will be required
to meet these burgeoning population demands (Hunter et al. 2017). Further, various biotic
and abiotic factors cause adverse environmental conditions or stress for crop plants, resulting
in a significant reduction in their yields. This significant reduction in crop yield due to stress
can jeopardize global food security (Strange and Scott 2005). Enhancement of crop yields is
an ever-changing global challenge for plant breeders, entomologists, pathologists,
physiologists and farmers. Hence, an in-depth understanding of plant stress is pivotal for
improving yield protection for sustainable production systems (Pessarakli 2019). Plant
scientists rely on crop phenotyping for precise and reliable trait collection and utilization of
genetic resources and tools to accomplish their research goals.

Phenotyping

Plant phenotyping is defined as the comprehensive assessment of complex traits of plants
such as development, growth, resistance, tolerance, physiology, architecture, yield, ecology,
and the elementary measurement of individual quantitative parameters that form the
foundation for complex trait assessment (Li et al. 2014). Breeding programs generally aim to
phenotype large populations for numerous traits throughout the crop cycle (Sandhu et al.
2021). This phenotyping challenge is further aggravated by the need to sample at multiple
environment with replicated trials. Traditional phenotyping is very costly, laborious,
destructive, and could decrease the significance or preciseness of the results. The
development of automated, high throughput phenotyping (HTP) systems merged with
artificial intelligence has largely overcome the problems linked with the contemporary state-
of-the-art crop stress phenotyping. HTP has offered great potential for non-destructive and
effective field-based plant phenotyping. Manual, semi-autonomous or autonomous platforms
furnished with single or multiple sensors record temporal and spatial data, resulting in large
amounts of data for storage and analysis (Kaur et al. 2021; Sandhu et al. 2021b). For the
analysis and interpretation of these massive datasets, machine learning (ML) and its subtypes,
i.e. deep learning (DL) approaches, are utilized (Sandhu et al. 2021a).

High-throughput phenotyping

High-throughput phenotyping (HTP) in plant breeding uses automated systems with sensors
and imaging to rapidly and accurately collect trait data from large plant populations,
replacing slow, manual methods. This allows for faster selection of improved crop varieties
with traits like yield, stress tolerance, and disease resistance by enabling breeders to evaluate
more plants with greater precision.
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Principle

» Automated platforms: HTP utilizes automated platforms, such as those on drones, that
can move across fields.

» Advanced sensors: These platforms are equipped with a variety of sensors, including
RGB cameras, hyperspectral and multispectral sensors, and near-infrared sensors.

» Data collection: These systems can capture detailed data on plant characteristics,
including canopy height, biomass, and coverage, often from a non-destructive viewpoint.

» Data analysis: The collected data is processed using advanced software, sometimes
incorporating Al and machine learning, to analyze traits like stress response, disease
resistance, and yield.

Key benefits for plant breeding
Accelerated progress: HTP significantly speeds up the breeding cycle by allowing
breeders to evaluate more genotypes than possible with traditional methods.

> Increased accuracy: By providing more precise and objective data, HTP enhances the
accuracy of selecting the best performing plants.

» Evaluation of difficult traits: It enables the measurement of traits that are hard to
quantify manually, such as subtle variations in plant morphology or internal quality
attributes.

» Sustainability: HTP contributes to the development of more resilient crops that require
fewer resources like water and fertilizer.

> Better data management: The resulting digital data can be easily stored, shared, and re-
analyzed, improving the reproducibility of research findings and facilitating
collaboration.

Phenotyping Platforms

The area of plant stress phenotyping is steadily progressing, with destructive, low throughput
phenotyping protocols/methods being substituted by non-invasive high-throughput methods
(Barbedo 2019). Expeditious developments in non-invasive affordable sensors and imaging
techniques and tools over the decades have transformed plant phenomics. Moreover, these
developments have brought harmony between the sensors, imaging techniques and analytical
tools. This consonance has led to the development of one-piece compact imaging platforms
for HTP studies. Several HTP platforms exist and are presently employed to phenotype
different biotic and abiotic stress-associated traits in various crops (Table 1).

Table 1. Details of some selected imaging platforms used for trait phenotyping for biotic
and abiotic stress and other morphological traits in crops (Gill et al., 2022)

A. Biotic and abiotic stresses

Arabidopsis Granier et al
PHENOPSIS Plant responses to water stress (Arabidopsis '
. (2006)
thaliana)
Soil water status (drought Rice (Oryza sativa) Sadok et al
PHENODYN scenarios), leaf elongation rate, and '
. : ) . (2007)
and micrometeorological variable maize (Zea mays)
Field monitoring Occurrence of the rice bug in the . . Fukatsu et al.
support system field Rice (Oryza sativa) ((2012)
LemnaTec 3D - . . . Hairmansis et
scanalyzer system Salinity tolerance traits Rice (Oryza sativa) al. (2014)
Root and shoot related traits under Le Marié et al
RADIX control and as well as stress Maize (Zea mays) '
>V (2016)
conditions
Wheat (Triticum Zhu et al
Phenolmage Plant responses to water stress aestivum), sorghum '
- (2021)
(Sorghum bicolor)
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B. Morphological and physiological traits (recorded under unstressed conditions)
High-throughput

rice phenotyping Agronomic traits Rice (Oryza sativa) Ya(rzl%leltl)al.
facility (HRPF)
. . Leaf area index, leaf biomass, . Liebisch et al.
Zeppelin NT aircraft early vigour, plant height Maize (Zea mays) (2015)
. . Wheat (Triticum Crain et al.
Phenocart Morphological traits aestivum) (2016)
Salas
Phenobot 1.0 Biomass-related traits Sorghgirgo(li(r))rghum Fernandez et
al. (2017)
. Cotton (Gossypium Martins et al.
PhenoRoots Root related traits hirsutum L) (2020)

Data has also been recorded in an automated and high throughput manner for root and
shoot related traits, leaf traits, plant height, plant biomass, early vigor, radiation use
efficiency, photosynthesis in different plant species such as rice, wheat, maize, sorghum
(Sorghum bicolor L.), cotton (Gossypium hirsutum L.), Arabidopsis, Brachypodium
(Brachypodium distachyon L.), rapeseed (Brassica napus L.), and barley (Hordeum vulgare
L.) among others using different phenotyping platforms such as RootReader3D (Clark et al.
2011), GROWSCREEN-Rhizo (Nagel et al., 2012), Zeppelin NT aircraft (Liebisch et al.
2015), Phenocart (Crain et al. 2016), Phenovator (Flood et al. 2016), PHENOARCH (Brichet
et al. 2017), Field Scanalyzer (Virlet et al. 2016), CropQuant (Zhou et al. 2017), and MVS-
Pheno (Wu et al. 2020). These platforms have the potential to be utilized for HTP of traits
associated with stress tolerance/resistance in different crops.

Imaging Techniques

Phenomics has been extensively used to monitor diseases, pest infestations, drought stress,
nutrient status, growth, presence of weeds and yield under stresses and normal conditions in
different crop species (Barbedo 2019). Technological advancement has made novel imaging
techniques available for use in HTP. Imaging techniques range from handheld mobile phones
to highly flexible drone imaging using unmanned aerial vehicles (UAV). UAVs offer a
platform that rapidly records data using different imaging sensors over large areas and
potentially gives images with high spatial resolution. UAV can be used to cover plots or
multiple fields in one flight, but their limited battery capacity reduces their utility for very
large-scale HTP. Numerous studies have been conducted where drone imaging is used to
assess biotic and abiotic stresses in plants. Some of these are provided in Table 2.

Table 2. Different imaging techniques used for plant stress phenotyping. (Gill et al., 2022)

Easily covers very
large areas
The data can easily
help predict droughts
1. Satellite Imagery and epiphytotics

High cost associated  Wheat yield (Fieuzal et
with constructing al. 2020), cotton yield

and launching (He and Mostovoy
as very large areas .
satellites. 2019)
can be covered at the
same
time

Iron deficiency
chlorosis severity in

Convenient, portable  Taking pictures of soybean(Naik et al.

Mobile

. Rapid and no each plant in the -
Cameras/Imaging operational cost field is not practical 2017), sahmty stress
tolerance (Awlia et al.
2016)
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UAVs (Unmanned
Aerial Vehicles) can
cover large areas,
Very economical,

They cannot cover as
much spatial area as
satellites because of

Grain yield wheat
(Hassan et al. 2019),
Plant Nitrogen content

3 UAV Imaging High resolution data  their limited battery (Camln_o et al. 2018),
. : wheat biomass (Yue et
and Easy to operate capacity and flight D\
with low learnin height al. 2017), maize yield
g gnt. (Maresma et al. 2016),
curve
'Yégitn?d;/:r;%d Still an evolving Plant architecture (Qiu
. . . que . technique et al. 2019), Heat stress
Imaging using Highly efficient as it . X
4. - - Much work required and stripe rust
robots provides human-like f kil d . h
manual phenotyping or workflow an resistance wheat
results data management (Zhang et al. 2019),

Spectral Indices for Plant Stress Phenotyping

Images captured by the aforementioned techniques need to be decoded, and spectral indices
(Sls) are used to assess the information in these images (Hunt et al. 2013). Sls involve
conducting various sets of operations on different spectral layers of an image. These sets of
operations include some mathematical calculations and combination of spectral reflectance
from two or more wavelengths. The result of this mathematical combination generates a
number that denotes the relative abundance of the feature of interest (Jackson and Huete
1991).

Conclusion

Plant stress phenotyping is an important parameter for predicting crop losses caused by
various biotic and abiotic stresses. It can be used to identify superior disease resistant and
stress-tolerant genotypes as well as to assess disease management decisions. The phenotypic
parameters include not only morphological data, but also a large number of physiological and
biochemical data, as well as deeper mechanistic data, allowing scientists to identify and
predict heritable traits through controlled phenotypic and genotypic studies. Current methods
for stress severity phenotyping are used at various scales, such as the number of plants
affected or exact counts of lesion numbers, or estimates of the severity or surface area
affected by a particular biotic/abiotic stress at the canopy of single plant and field levels.
More research is needed in the future to improve UAV-based sensing for plant phenotyping.
High-performance and low cost UAVs should be introduced in future studies. For long-term
and large-field plant phenotyping, high-performance UAVs with high flight stability,
precision, long flight duration, and heavy payload are required. Unlike ground-based
phenotyping, UAV-based phenotyping is afflicted by a serious issue: the safety of the UAV
and its sensors. With the need to double food production to feed the projected population of
10 billion by 2050, high throughput plant phenotyping technology are the other new breeding
innovations which are essential tools to ensure food security in future.
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