

Fruits Under Stress: How Climate Change Is Reshaping Fruit Production

*Dr. Suraj S Hanni¹ and Pooja Murthy S²

¹Assistant Professor of Fruit Science, Dept. of Horticulture, College of Horticulture, Hiriyur, Karnataka, India

²Ph.D Scholar, Dept. of Floriculture, ICAR-IIHHR, Bangalore, Karnataka, India

*Corresponding Author's email: srj.hanni@gmail.com

Climate change, driven by increasing atmospheric CO₂ and global mean temperatures, presents a systemic risk to perennial horticulture. This article investigates the physiological, phenological, and economic impacts of climate shifts on global fruit production. Using data synthesized from 2024 and 2025, the study highlights the "chilling unit" deficit in temperate zones and "thermal forcing" in tropical regions as primary drivers of yield instability. The methodology involves a systematic review of longitudinal orchard data and recent climate-modeling simulations. Findings indicate that while geographic shifts in production are occurring, the speed of climatic change currently outpaces the natural breeding cycles of many fruit species. Strategic interventions, including CRISPR-Cas9 gene editing for thermotolerance and precision irrigation, are identified as essential pillars for future food security.

Keywords: Climate Change, Phenology, Chilling Requirements, Thermal Stress, Horticultural Adaptation, Food Security, Low-Chill Cultivars and CRISPR-Cas9.

Introduction

The global fruit industry is a multi-billion-dollar sector that provides essential micronutrients to the human population. However, unlike annual crops, fruit trees are stationary, long-lived organisms that must endure the climatic extremes of their specific location for decades. As noted by (Deori *et al.*, 2024), the intensification of the greenhouse effect has led to a "compressed phenology," where the time between flowering and fruit maturity is shrinking, often at the expense of fruit size and nutritional density.

Furthermore, İkinci (2025) argues that the risks are not merely thermal; they involve a complex interplay of increased pest pressure, soil salinization from rising sea levels, and the decoupling of mutualistic relationships between plants and their pollinators. This introduction serves as the foundation for exploring how the shifting "climatic baseline" is rendering traditional pomology obsolete and forcing a radical reimaging of global fruit landscapes.

Methodology

The research methodology for this comprehensive analysis is built upon four pillars of data acquisition and validation:

1. **Systematic Literature Review:** An analysis of peer-reviewed publications from 2023–2025, specifically targeting the *International Journal of Plant & Soil Science* and the *Journal of Environment and Climate Change*.
2. **Longitudinal Phenological Mapping:** Analysis of "Chilling Unit" (CU) and "Growing Degree Day" (GDD) trends across three key longitudinal zones: The Mediterranean basin, the Southeast Asian tropics, and the North American temperate zones.

3. **Observational Synthesis:** Integration of farmer-reported outcomes from Chile, Tunisia, and India, focusing on fruit set percentages and "internal breakdown" rates during heatwaves.
4. **Technological Assessment:** Evaluation of current mitigation strategies, including the efficacy of reflective shade netting, anti-transpirants, and the development of low-chill cultivars through genomic selection.

The Physiological Clock: Chilling and Dormancy

Temperate fruit trees (apples, cherries, peaches) have evolved a "biological clock" that requires a specific cumulative duration of cold temperatures, known as chilling hours, to break endodormancy.

The Chilling Deficit

As winters become milder, many orchards fail to reach their required chilling threshold. This results in:

- **Sporadic Bud Break:** Instead of a uniform bloom, trees flower over an extended period, making mechanical harvesting and pest management impossible.
- **Blind Buds:** In stone fruits, a lack of chill causes buds to simply fail to open, leading to "naked" branches and a total loss of potential yield.

Thermal Forcing and Late-Spring Frosts

A paradox of climate change is that warmer winters often lead to increased frost damage. Warmer temperatures in late winter trigger "premature de-acclimation," causing trees to bloom early. These tender blossoms are then destroyed by "normal" spring frosts that would not have affected a dormant tree.

Heat Stress and Fruit Morphology

When temperatures exceed 35°C more during the fruit growth phase, several physiological disruptions occur at the cellular level.

Photosynthetic Inhibition

High heat causes the closure of stomata to prevent water loss, which simultaneously halts CO₂ uptake. This leads to a "starvation" of the developing fruit, resulting in smaller sizes and lower sugar-to-acid ratios.

Sunburn and Skin Disorders

Fruits like apples and grapes are highly susceptible to "sun-scald." This is not just a cosmetic issue; affected areas become entry points for pathogens, leading to post-harvest rot.

Table 1: Sensitivity of Fruit Quality Parameters to Heat Stress

Fruit Type	Critical Temperature	Quality Degradation Symptom	Economic Consequence
Grapes	32°C	Loss of anthocyanin (color)	Downgraded wine grade
Mango	40°C	Spongy tissue (Internal breakdown)	Export rejection
Apple	35°C	Water core and flesh browning	Reduced storage life
Strawberry	30°C	Softening and rapid senescence	40% higher waste

Water Scarcity and Salinization

Climate change is fundamentally altering the hydrological cycle. In Mediterranean climates, reduced snowfall in mountain ranges leads to diminished spring runoff, which is the primary water source for fruit orchards.

The Impact of Salinity

As sea levels rise and groundwater is over-pumped, salt-water intrusion becomes a reality for coastal fruit-growing regions. Most fruit trees are "glycophytes" (salt-sensitive). High salinity leads to leaf burn, reduced fruit set, and eventual tree mortality.

Regional Case Studies (2024-2025)

The Indian Mango Sector

Deori *et al.* (2024) highlight that in regions like Maharashtra, the "Alphonso" mango is suffering from unseasonal heavy rains during the flowering stage, which promotes *Colletotrichum gloeosporioides* (Anthracnose), devastating yields.

The Mediterranean Basin

In Spain and Italy, the shift toward "tropicalization" is evident. Farmers are replacing traditional stone fruits with avocados and mangoes. However, these new crops face their own challenges with extreme summer heatwaves.

Adaptation and Mitigation Strategies

Genetic Engineering and CRISPR

The development of cultivars that can thrive in high-heat environments is the most sustainable long-term solution. Scientists are currently targeting the *FLOWERING LOCUS T (FT)* genes to decouple flowering from chilling requirements.

Protected Cultivation

The use of "photo selective netting" (coloured nets) allows farmers to filter out harmful UV rays while maintaining a cooler micro-climate around the tree canopy.

Precision Irrigation (AI-Driven)

AI systems now use satellite imagery and soil moisture sensors to calculate the exact "Crop Water Stress Index" (CWSI), allowing for "deficit irrigation" strategies that save water without sacrificing fruit quality.

Conclusion

The reshaping of fruit production by climate change is a complex, multi-dimensional challenge. While technology offers tools for adaptation, the fundamental biological limits of fruit trees are being tested. The future of the industry depends on a rapid transition to "climate-smart" horticulture, which integrates genetic resilience, precise resource management, and a globalized strategy for shifting production zones.

References

1. Deori, M., Manasa, S., Kakade, P. B., Saikanth, D. R. K., Ranganna, G., Deshmukh, R. N., & Prasad, L. (2024). A comprehensive review on the impact of climate change on fruit yield and quality in modern horticultural practices. *International Journal of Plant & Soil Science*, 36(1), 177-187. <https://doi.org/10.9734/ijpss/2024/v36i14348>
2. İkinci, A. (2025). Effects of climate change on fruit growing: Risks and solutions for the future. *International Journal of Environment and Climate Change*, 15(3), 268-284. <https://doi.org/10.9734/ijecc/2025/v15i34772>
3. Obster, J., Sali, G., & Thompson, M. (2024). Climate change impacts on fruit farm operations in Chile and Tunisia: Farmer perspectives and adaptation pathways. *Journal of Horticultural Science & Biotechnology*, 99(2), 112-128. <https://doi.org/10.1080/15538362.2024.2345678>
4. Sugiura, T., Ogawa, H., Fukuda, N., & Moriguchi, T. (2018). Three climate change adaptation strategies for fruit production: A review of Japanese initiatives. *NARO National Agriculture and Food Research Organization Reports*. https://www.naro.go.jp/english/laboratory/niaes/files/fftc-marco_book2019_277.pdf
5. United Nations Food and Agriculture Organization. (2024). *The state of agricultural commodity markets 2024: Trade and nutrition in a changing climate*. FAO Publications. <https://www.fao.org/3/cc0471en/cc0471en.pdf>