

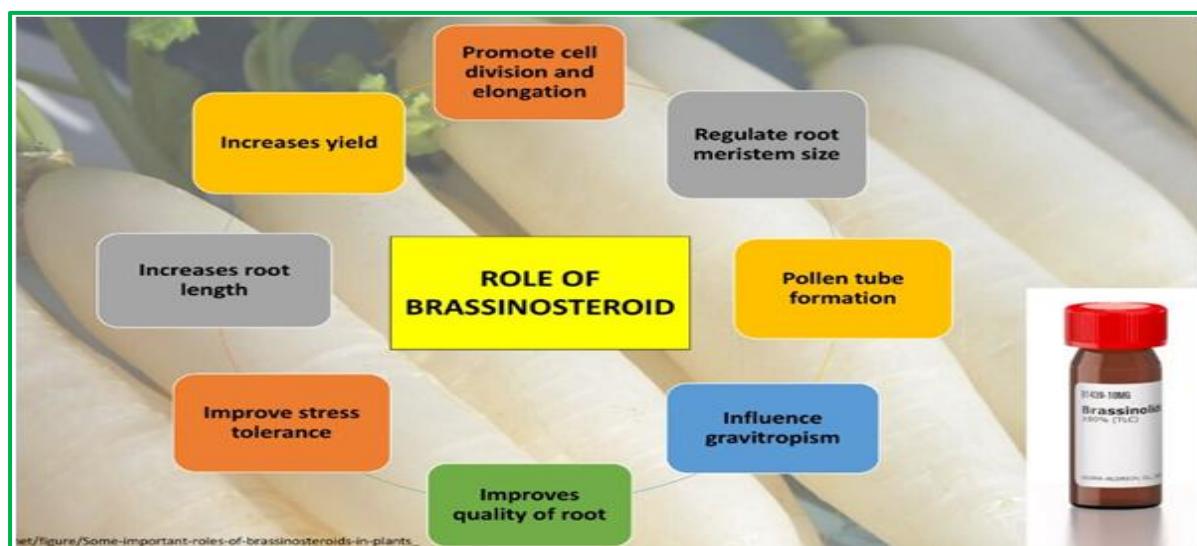
Brassinosteroids: The Hidden Drivers of Vegetable Growth and Resilience

*D. Prethikaa, Dr. M. S. Marichamy, Dr. V. Kanthaswamy, Dr. S. Nadarajan, D. Deerajkumar, S. Priyanga, R. Rajalakshmi and R. Savitha

*Pandit Jawaharlal Nehru college of Agriculture and Research Institute, Karaikal, UT of Puducherry, India

*Corresponding Author's email: prethikaadevse@gmail.com

Vegetables form the nutritional foundation of human diets, supplying vitamins, minerals, antioxidants, and dietary fiber essential for health and disease prevention. From leafy greens such as spinach and lettuce to fruit vegetables like tomato, cucumber and pepper, vegetable crops are cultivated across diverse agro-climatic regions. However, their productivity is increasingly threatened by environmental stresses, declining soil health and climate variability. Hidden within plant tissues is a powerful yet often overlooked group of natural regulators that quietly shape vegetable growth and survival is brassinosteroids (BRs). First isolated from the pollen of *Brassica napus*, brassinosteroids are steroidal plant hormones now recognized as essential regulators of plant growth, development and stress adaptation. Although present in extremely small quantities, their physiological influence is profound. Over the past few decades, research has revealed that BRs regulate plant architecture, photosynthesis, nutrient use efficiency and defense responses, making them central players in vegetable crop performance.


Fig.1- Commercially available plant growth supplements containing brassinolide

What makes brassinosteroids particularly fascinating is their dual role. They not only promote vigorous growth under favorable conditions but also enhance tolerance to abiotic stresses such as drought, salinity, heat, cold and heavy metal toxicity. Acting as subtle molecular messengers, BRs enable vegetables to maintain growth, productivity and quality even under challenging environmental conditions. This article explores how brassinosteroids function as hidden drivers of vegetable growth and resilience and why they are gaining attention in sustainable agriculture.

Understanding Brassinosteroids: Small Molecules with Big Influence

Brassinosteroids belong to a unique class of polyhydroxylated steroid hormones that are structurally similar to animal steroids but function exclusively in plants. To date, more than 70 BR compounds have been identified, with brassinolide being the most biologically active. These hormones are synthesized in young tissues such as leaves, buds, roots, flowers and developing fruits, indicating their involvement throughout the plant life cycle.

Unlike classical growth hormones that act at higher concentrations, BRs are effective at nanomolar levels. They regulate gene expression by activating specific receptors located on the plant cell membrane, triggering intracellular signaling cascades that control growth and stress responses. Importantly, BRs do not act alone; they interact with other phytohormones such as auxins, gibberellins, cytokinins, abscisic acid, ethylene and salicylic acid, forming an integrated hormonal network. In vegetables, this hormonal integration allows plants to balance rapid growth with survival, ensuring yield stability across fluctuating environments.

Fig-2. Role of Brassinosteroids on vegetables

Driving Vegetative Growth in Vegetables

Cell Division and Expansion

One of the most visible effects of brassinosteroids is their stimulation of cell division and elongation. By regulating genes involved in cell wall loosening and cytoskeleton organization, BRs promote elongation of stems, expansion of leaves and overall biomass accumulation. This results in larger leaf area, improved canopy development and stronger plant architecture, all of which are crucial for maximizing photosynthesis.

In vegetable crops such as tomato, pea, cabbage, and cucumber, experimental applications of brassinolide have been shown to increase plant height, leaf number and stem thickness, translating into improved yield potential.

Root System Development

Roots play a critical role in nutrient and water uptake. Brassinosteroids enhance root length, lateral root formation, and root hair development, improving the plant's ability to access soil resources. A more extensive root system allows vegetables to perform better under nutrient-poor or water-limited conditions.

Enhancing Photosynthesis and Metabolism

Photosynthesis is the engine of plant growth and brassinosteroids act as fine-tuners of this process. BRs increase chlorophyll content, improve chloroplast development and enhance the efficiency of photosystem II. This leads to improved carbon assimilation and higher carbohydrate production. In leafy vegetables, enhanced photosynthesis directly contributes to greater leaf biomass and improved visual quality. In fruit vegetables, increased photosynthetic capacity supports flower formation, fruit set, and fruit enlargement. BRs also

regulate key metabolic enzymes involved in carbohydrate and protein synthesis, ensuring that the energy captured during photosynthesis is efficiently converted into plant biomass.

Brassinosteroids and Yield in Vegetables

Yield in vegetable crops depends on multiple factors, including flowering, fruit development, and sink-source relationships. Brassinosteroids influence each of these stages:

- **Flower initiation and development:** BRs promote floral differentiation and reduce flower drop under stress conditions.
- **Fruit set and growth:** By enhancing cell division during early fruit development, BRs contribute to larger fruit size and uniformity.
- **Quality attributes:** BRs influence sugar accumulation, pigment synthesis, and nutrient content, improving taste, color, and nutritional value.

Studies in tomato, pepper, and pea have consistently shown yield increases following BR application, particularly when crops are exposed to environmental stress.

Shielding Vegetables Against Abiotic Stress

Drought Stress

Drought is one of the most limiting factors in vegetable production. Brassinosteroids help plants cope with water deficit by improving water-use efficiency and activating antioxidant defence systems. Under drought conditions, plants accumulate reactive oxygen species (ROS) that damage cellular structures. BRs enhance the activity of antioxidant enzymes such as superoxide dismutase, catalase and peroxidase, reducing oxidative damage.

BRs also influence stomatal behaviour, helping plants balance water conservation with carbon dioxide uptake.

Salinity Stress

Salinity disrupts ion balance and reduces water availability. Brassinosteroids mitigate salt stress by regulating ion transport, maintaining membrane stability and enhancing osmoprotectant accumulation. In salt-sensitive vegetables like cucumber and tomato, BR application has been shown to restore growth and photosynthesis under saline conditions.

Temperature Extremes

Both heat and cold stress impair vegetable productivity. Brassinosteroids activate stress-responsive genes and protect cellular membranes, enabling plants to tolerate temperature fluctuations. This is particularly important in climate-change-prone regions where temperature extremes are becoming more frequent.

Protection Against Heavy Metals and Pollutants

In contaminated soils, heavy metals such as cadmium, zinc, and lead pose serious risks to vegetable safety and productivity. Brassinosteroids reduce metal uptake and enhance detoxification mechanisms within plant tissues. By strengthening antioxidant systems and maintaining photosynthetic function, BRs help vegetables survive in marginal soils while reducing damage to edible parts.

Table-1. Effects of Brassinosteroids on Vegetables

S.No.	Vegetables	Scientific Name	Effect of Brassinosteroids
1.	Tomato	<i>Solanum lycopersicum</i>	Enhances vegetative growth, flower retention, fruit set, fruit size and tolerance to drought and heat stress
2.	Cucumber	<i>Cucumis sativus</i>	Improves vine growth, photosynthetic efficiency, fruit yield and salinity stress tolerance
3.	Brinjal	<i>Solanum melongena</i>	Promotes shoot development, flowering, fruit enlargement and resistance to abiotic stress
4.	Capsicum	<i>Capsicum annuum</i>	Increases chlorophyll content, fruit quality, heat stress tolerance and shelf life
5.	Okra	<i>Abelmoschus esculentus</i>	Improves plant vigour, pod development, yield and tolerance to moisture and temperature stress

Post-Harvest Benefits: Extending Freshness and Quality

The role of brassinosteroids extends beyond the field into post-harvest physiology. Application of BRs before or after harvest has been shown to delay senescence, reduce respiration rates, and maintain firmness, colour and nutritional quality in vegetables such as peppers, tomatoes, and leafy greens. These effects are particularly valuable for reducing post-harvest losses, improving shelf life, and maintaining market value during storage and transportation.

Table-2. Effects of Brassinosteroids on Root and Bulbous Vegetables

S.No.	Vegetables	Scientific Name	Effect of Brassinosteroids
1.	Carrot	<i>Daucus carota</i>	Enhances root elongation, root diameter, biomass accumulation and nutrient uptake
2.	Radish	<i>Raphanus sativus</i>	Promotes root enlargement, improves root quality and increases stress tolerance
3.	Beetroot	<i>Beta vulgaris</i>	Improves root growth, sugar accumulation, pigment synthesis and antioxidant activity
4.	Onion	<i>Allium cepa</i>	Increases bulb size, dry matter content, uniformity and tolerance to drought and salinity
5.	Garlic	<i>Allium sativum</i>	Enhances bulb development, clove size, antioxidant capacity, and resistance to abiotic stress

Practical Use of Brassinosteroids in Vegetable Farming

The practical application of brassinosteroids (BRs) in vegetable farming has gained increasing attention due to their ability to enhance growth, improve stress tolerance and maintain yield stability under challenging environmental conditions. Unlike conventional agrochemicals, brassinosteroids are naturally occurring plant hormones that are effective at extremely low concentrations, making them environmentally friendly and economically attractive for modern vegetable production systems.

Foliar Application in Field and Protected Cultivation

Foliar spraying is the most widely adopted method for applying brassinosteroids in vegetable crops. Low concentrations of BRs, typically in the nanomolar to micromolar range, are sprayed directly onto leaves during critical growth stages such as early vegetative development, flowering, or fruit initiation. Foliar application ensures rapid absorption and direct physiological response, leading to enhanced leaf expansion, increased chlorophyll content and improved photosynthetic efficiency. In vegetables such as tomato, cucumber, pepper and leafy greens, foliar application of brassinolide has been shown to promote vigorous growth and reduce yield losses under drought, salinity and temperature stress. In protected cultivation systems like polyhouses and greenhouses, BR sprays are particularly useful for mitigating heat stress and maintaining crop uniformity.

Seed Treatment and Seedling Vigor Enhancement

Brassinosteroids are also used in seed treatment or seed priming to improve germination and early seedling establishment. Seeds soaked in dilute BR solutions before sowing often exhibit faster and more uniform germination, stronger root development, and higher seedling vigour. This practice is especially beneficial in vegetable nurseries where healthy transplants are essential for successful crop establishment. Enhanced early growth enables seedlings to better tolerate transplant shock and early-season stress, leading to improved stand establishment in the field.

Stress Management Under Adverse Conditions

One of the most valuable practical uses of brassinosteroids is their role in stress management. Under water deficit, salinity, heat, or cold stress, BR application activates antioxidant defence systems, stabilizes cell membranes, and improves water-use efficiency. Farmers can apply

BRs as a preventive measure before the onset of anticipated stress or as a corrective treatment during stress periods. This approach is particularly relevant in climate-vulnerable regions where vegetables are frequently exposed to unpredictable weather patterns.

Integration with Sustainable Farming Practices

Brassinosteroids fit well into sustainable and climate-smart vegetable farming systems. Their use can be integrated with organic amendments, biofertilizers, and reduced chemical inputs without negative interactions. Because they are effective at very low doses and leave no harmful residues, BRs support environmentally responsible farming while maintaining productivity. When combined with good agronomic practices and precise application timing, brassinosteroids can serve as powerful tools for improving vegetable crop resilience, yield, and quality in a sustainable manner.

Conclusion

Brassinosteroids have emerged as powerful yet subtle regulators of vegetable growth and resilience, influencing nearly every stage of plant development, from seedling establishment to harvest and post-harvest quality. By enhancing cell expansion, photosynthetic efficiency, nutrient uptake and hormonal coordination, these naturally occurring plant hormones support vigorous growth and improved yield. More importantly, their ability to strengthen antioxidant defences and stabilize physiological processes enables vegetables to withstand abiotic stresses such as drought, salinity, temperature extremes and soil contamination, which are becoming increasingly common under changing climatic conditions.

From a practical perspective, the integration of brassinosteroids into vegetable farming offers a sustainable and eco-friendly approach to enhancing productivity without increasing chemical dependency. Their effectiveness at low concentrations, compatibility with existing agronomic practices, and potential to improve both yield and quality make them valuable tools for climate-smart agriculture. Brassinosteroids are likely to play an expanding role in resilient vegetable production systems, contributing to food security, environmental sustainability, and the long-term stability of horticultural agriculture.

References

1. Bajguz, A., & Hayat, S. (2009). Effects of brassinosteroids on the plant responses to environmental stresses. *Plant Physiology and Biochemistry*, 47(1), 1–8.
2. Biswas, S., et al. (2023). Brassinosteroids and abiotic stress tolerance in horticultural crops. *Horticultural Plant Journal*, 9(3), 245–256.
3. Clouse, S. D., & Sasse, J. M. (1998). Brassinosteroids: Essential regulators of plant growth and development. *Annual Review of Plant Physiology and Plant Molecular Biology*, 49, 427–451.
4. Divi, U. K., & Krishna, P. (2009). Brassinosteroid signaling: A nexus for plant growth and stress responses. *Plant Cell and Environment*, 32(12), 1783–1795.
5. He, Z., et al. (2024). The role of brassinosteroids in plant cold stress response. *Life*, 14(8), 1015.
6. Halaji, B., et al. (2024). Brassinosteroids in pepper under high temperature stress. *Horticulturae*, 10(10), 1062.
7. Krishna, P. (2003). Brassinosteroid-mediated stress responses. *Journal of Plant Growth Regulation*, 22, 289–297.
8. Nolan, T. M., et al. (2020). Brassinosteroids: Multidimensional regulators of plant growth. *Plant Cell*, 32(2), 295–318.
9. Praveena, J., et al. (2020). Brassinosteroids: A multifunctional phytohormone. *Current Journal of Applied Science and Technology*, 39, 174–196.
10. Shahzad, B., et al. (2018). Brassinosteroids in plant stress tolerance. *Environmental and Experimental Botany*, 155, 219–232.
11. Shinozaki, K., & Yamaguchi-Shinozaki, K. (2007). Gene networks involved in drought stress response. *Journal of Experimental Botany*, 58, 221–227.

12. Sourabh, R., et al. (2024). Brassinosteroids in vegetable crops: A review. *International Journal of Advanced Biochemistry Research*, 8(7), 205–214.
13. Vardhini, B. V. (2017). Brassinosteroids and crop improvement. *Plant Growth Regulation*, 82, 1–15.
14. Verma, S., et al. (2024). Role of plant growth regulators in vegetable productivity. *Journal of Scientific Research and Reports*, 30(12), 681–697.
15. Wei, Z., & Li, J. (2016). Brassinosteroids and plant development. *Annual Review of Plant Biology*, 67, 319–346.
16. Xia, X. J., et al. (2018). Brassinosteroids improve photosynthesis and stress tolerance. *Plant Physiology*, 178, 116–129.
17. Yusuf, M., et al. (2011). Brassinosteroids: Physiological roles and applications. *Plant Growth Regulation*, 63, 1–11.
18. Zhu, J. K. (2016). Abiotic stress signaling and responses in plants. *Cell*, 167(2), 313–324.
19. <https://easybiologyclass.com/brassinolide-use-in-agriculture/>