

Spirulina: A Multifunctional Cyanobacterium in Agriculture, Nutrition, and Biotechnology

*K. Manasa¹, Dr. V. Ramya², K. Gopika³ and Ch. Yashaswini⁴

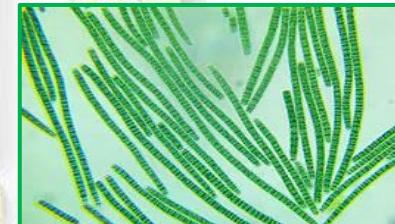
¹Scientist, Department of Agricultural Microbiology, Regional Agricultural Research Station, Warangal, PJTAU, Telangana, India

²Scientist, Department of Plant Pathology, Regional Agricultural Research Station, Warangal, PJTAU, Telangana, India

³Assistant Professor, Dept. of Plant Pathology, Agricultural College, Warangal, PJTAU

⁴Assistant Professor, Dept. of Plant Pathology, Agricultural College, Siricilla, PJTAU

*Corresponding Author's email: manasareddy3275@gmail.com


Spirulina is a filamentous, photosynthetic cyanobacterium (blue-green algae) belonging to the genus *Arthrosphaera*. It has gained global attention due to its exceptional nutritional value, rapid growth rate, and diverse applications in agriculture, medicine, and biotechnology. Traditionally consumed as a food supplement, spirulina is now recognized as a sustainable bioresource with immense potential in agricultural microbiology, especially as a biofertilizer, bio stimulant, and soil conditioner.

Taxonomy and Morphology

Spirulina belongs to the domain Bacteria, phylum Cyanobacteria, class Cyanophyceae, and genus *Arthrosphaera*. Common species include *Arthrosphaera platensis* and *Arthrosphaera maxima*. Morphologically, spirulina consists of multicellular, spiral-shaped filaments (trichomes) without heterocysts. It reproduces vegetatively through fragmentation.

Spirulina thrives in **alkaline environments (pH 8.5–11)** and requires high light intensity, warm temperatures, and mineral-rich water for optimal growth.

Nutritional Composition

Spirulina is considered a “superfood” due to its rich biochemical profile:

- **Proteins:** 60–70% (containing all essential amino acids)
- **Vitamins:** B-complex (B1, B2, B3), vitamin E, beta-carotene
- **Minerals:** Iron, calcium, magnesium, potassium
- **Essential fatty acids:** Gamma-linolenic acid (GLA)
- **Pigments:** Phycocyanin, chlorophyll, carotenoids
- **Antioxidants:** Phenolic compounds and flavonoids

This unique composition makes spirulina valuable for human nutrition, animal feed, and plant growth promotion.

Cultivation of Spirulina

Spirulina is cultivated in open raceway ponds or closed photobioreactors. The commonly used growth medium is Zarrouk's medium, rich in sodium bicarbonate, nitrates, phosphates, and trace elements.

Optimal Growth Conditions

- Temperature: 30–35°C
- Light: Continuous or intermittent sunlight
- pH: 9–10
- Salinity: Moderate to high
- Carbon source: CO₂ or sodium bicarbonate

Due to its alkaline preference, spirulina cultivation faces minimal contamination risks, making it economically feasible.

Role of Spirulina in Agricultural Microbiology

1. Spirulina as a Biofertilizer

Spirulina improves soil fertility by:

- Enhancing microbial activity
- Increasing organic carbon content
- Improving nutrient availability (N, P, K)

When applied as dried biomass or liquid extract, spirulina stimulates plant growth and improves crop productivity.

2. Plant Growth Promotion

Spirulina produces several bioactive compounds such as:

- Auxins
- Gibberellins
- Cytokinins
- Amino acids

These compounds enhance seed germination, root development, chlorophyll synthesis, and photosynthetic efficiency. Studies have shown increased yields in crops like rice, wheat, tomato, and vegetables following spirulina application.

3. Biostimulant and Stress Tolerance

Spirulina extracts act as **biostimulants**, helping plants tolerate:

- Salinity stress
- Drought stress
- Heavy metal toxicity

Antioxidant compounds reduce oxidative stress in plants, improving resilience under adverse environmental conditions.

4. Soil Health Improvement

Application of spirulina:

- Improves soil aggregation
- Enhances enzymatic activities
- Supports beneficial microbial populations

Its organic nature makes it suitable for **organic and sustainable farming systems**.

Spirulina in Integrated Nutrient Management (INM)

Spirulina can be integrated with:

- Chemical fertilizers (to reduce dose)
- Organic manures
- Microbial inoculants (PSB, KSB, AMF)

Such integration improves nutrient use efficiency and reduces environmental pollution.

Role in Animal Feed and Aquaculture

Spirulina is widely used as:

- Poultry feed supplement (improves egg quality)
- Fish feed additive (enhances growth and pigmentation)
- Livestock feed (improves immunity and productivity)

Its high protein and pigment content make it ideal for aquaculture systems.

Medicinal and Pharmaceutical Applications

Spirulina exhibits:

- Antioxidant activity
- Anti-inflammatory properties
- Antiviral and antimicrobial effects
- Immunomodulatory functions

Phycocyanin, a blue pigment, is widely studied for its therapeutic applications and as a natural food colorant.

Environmental Applications

- **Carbon sequestration:** Efficient CO₂ fixation
- **Wastewater treatment:** Absorbs nutrients and heavy metals
- **Bioremediation:** Removes pollutants from aquatic systems

Spirulina thus contributes to environmental sustainability.

Advantages of Spirulina

- Rapid growth rate
- High biomass productivity
- Eco-friendly and renewable
- Non-toxic and biodegradable
- Low input requirement

Limitations and Challenges

- Initial setup cost for controlled systems
- Requirement of skilled management
- Quality control during mass production
- Limited awareness among farmers

Future Prospects

Future research focuses on:

- Genetic improvement of strains
- Cost-effective mass cultivation
- Development of spirulina-based biofertilizers
- Integration into climate-smart agriculture

With increasing emphasis on sustainable agriculture, spirulina holds great promise as a multifunctional microbial resource.

Conclusion

Spirulina is a versatile cyanobacterium with immense potential in agriculture, nutrition, and environmental management. Its role as a biofertilizer, biostimulant, and sustainable protein source highlights its importance in modern agricultural microbiology. Adoption of spirulina-based technologies can significantly contribute to eco-friendly farming and global food security.

References

1. Minello, L. V. P., Kuntzler, S. G., Lamb, T. I., et al. (2024). *Rice plants treated with biochar derived from Spirulina optimize resource allocation towards seed production*. *Frontiers in Plant Science*. Frontiers
2. Shedeed, Z. A., Gheda, S., Elsanadily, S., et al. (2022). *Spirulina platensis biofertilization for enhancing growth, photosynthetic capacity and yield of Lupinus luteus*. *Agriculture*, 12(6), 781. MDPI
3. Water extracts of *Spirulina platensis* and *Chlorella vulgaris* enhance tomato tolerance against saline irrigation. (2024). *Biomass Conversion and Biorefinery*. Springer
4. Wang, Y., Liu, X., Liu, M., et al. (2025). *The impact of selenium-enriched Spirulina platensis on alfalfa silage quality and microbial communities*. *BMC Microbiology*