

Microgreens in Vegetables: A Concentrated Source of Phytonutrients

*D. Prethikaa, Dr. M. S. Marichamy, D. Deerajkumar, S. Priyanga,
R. Rajalakshmi and R. Savitha

Dept. of Horticulture, Pandit Jawaharlal Nehru College of Agriculture and Research
Institute, Karaikal, UT of Puducherry, India

*Corresponding Author's email: prethikaadevse@gmail.com

Microgreens, the tender young seedlings of vegetables and herbs, have gained significant attention over the past decade for their striking colours, unique flavours and potent nutritional content. These tiny greens, harvested just 7-21 days after germination, are not just decorative garnishes but are emerging as concentrated sources of essential nutrients and phytonutrients. With growing interest in functional foods and dietary strategies to improve health, microgreens provide a compact, nutrient-dense option for enhancing diet quality. Unlike mature vegetables, microgreens concentrate vitamins, minerals, antioxidants and bioactive compounds in their early growth stage, often exceeding the nutrient content of their adult plant counterparts. Their high phytonutrient content makes them relevant not only for general wellness but also for disease prevention, immune support and metabolic health. This article explores the scientific evidence behind microgreens, their nutritional and phytonutrient profile, health benefits, cultivation practices, and practical dietary incorporation.

Microgreens (the tender young seedlings of vegetables) of essential nutrients and phytonutrients. With growing interest in functional foods and dietary strategies to improve health, microgreens provide a compact, nutrient-dense option for enhancing diet quality. Unlike mature vegetables, microgreens concentrate vitamins, minerals, antioxidants and bioactive compounds in their early growth stage, often exceeding the nutrient content of their adult plant counterparts. Their high phytonutrient content makes them relevant not only for general wellness but also for disease prevention, immune support and metabolic health. This article explores the scientific evidence behind microgreens, their nutritional and phytonutrient profile, health benefits, cultivation practices, and practical dietary incorporation.

Understanding Microgreens

Microgreens are harvested after the seedling has developed its first true leaves but before full maturity. They differ from sprouts in that sprouts are harvested before leaves appear and are grown in the dark or low light, whereas microgreens are grown with light, allowing the production of chlorophyll and secondary metabolites. Common microgreen varieties include broccoli, radish, mustard, beet, spinach, fenugreek, fennel, coriander. Each species exhibits unique nutrient compositions and flavours. The small size of microgreens enables the concentration of nutrients within a tiny edible mass. The metabolic activity during the early growth stage allows rapid biosynthesis of vitamins, minerals and antioxidant compounds, which are essential for both plant development and potential health benefits for human consumption.

Phytonutrients in Microgreens

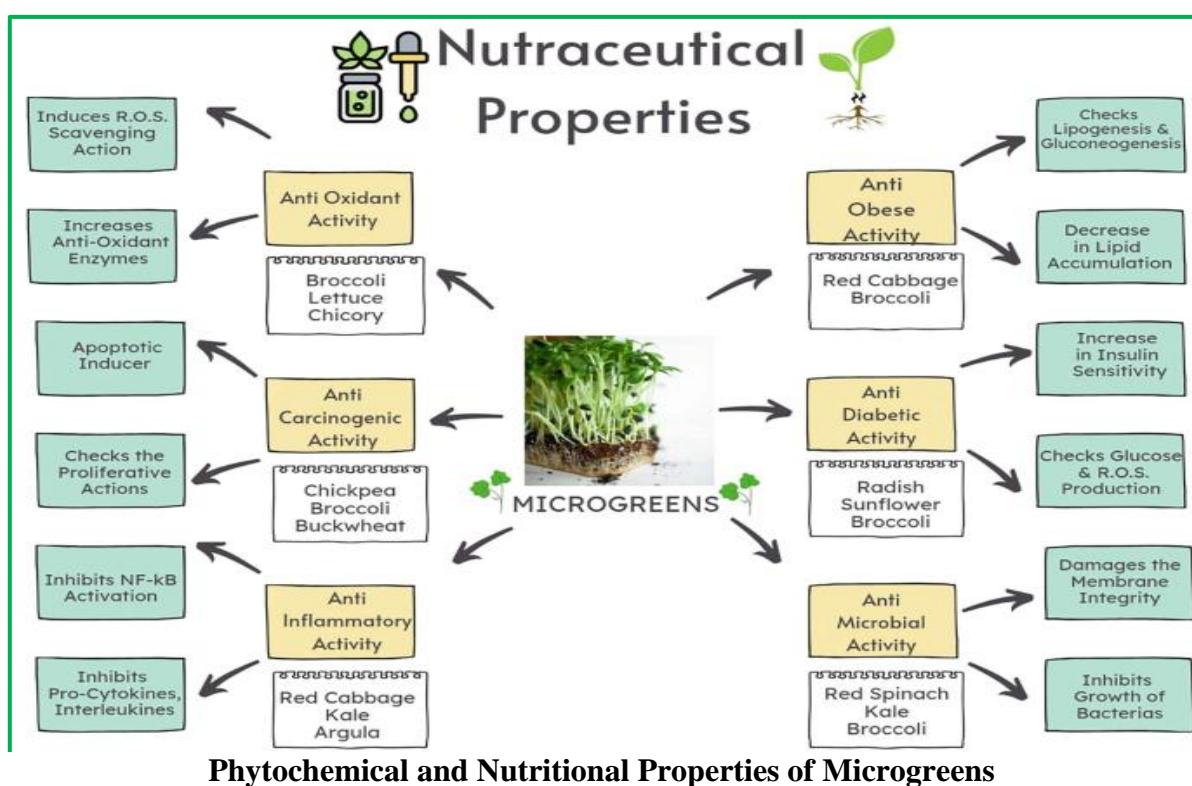
Phytonutrients, or phytochemicals, are bioactive compounds in plants that support human health beyond basic nutrition. They are not classified as essential nutrients but have been

associated with multiple physiological benefits, including antioxidant, anti-inflammatory and chemoprotective effects.

Phenolic Compounds and Flavonoids

These compounds are powerful antioxidants that protect cells from oxidative damage caused by free radicals. Microgreens such as red cabbage, broccoli and radish contain high levels of phenolics and flavonoids, which may reduce oxidative stress and inflammation.

Carotenoids


Carotenoids, including beta-carotene, lutein, and zeaxanthin, contribute to the bright colors of microgreens. They are vital for vision, skin health and immune function and exhibit antioxidant properties.

Glucosinolates

Found particularly in Brassicaceae microgreens like broccoli and mustard, glucosinolates break down into bioactive compounds such as sulforaphane, known for their potential chemoprotective effects and ability to modulate detoxification pathways.

Vitamins and Minerals

Microgreens are abundant in vitamins C, E, and K, as well as minerals such as iron, zinc, calcium and potassium. The high concentrations of these nutrients in microgreens support immunity, bone health, and overall metabolic function.

Nutrient Density of Microgreens

Microgreens are remarkable for their nutrient density. Multiple studies show that on a per-weight basis, microgreens contain significantly higher concentrations of vitamins, minerals and phytonutrients compared to mature vegetables. For instance:

- Broccoli microgreens exhibit higher levels of total phenolic compounds and essential minerals than mature broccoli.
- Black radish microgreens demonstrate strong antioxidant potential, surpassing the adult plant in free radical scavenging activity.
- Bean microgreens provide elevated ascorbic acid (vitamin C) content.
- Sunflower microgreens contain high levels of calcium and carotenoids.

The early growth stage is characterized by active metabolism, where seedlings mobilize stored seed nutrients and produce antioxidants and other bioactive molecules for growth and

defence. This physiological mechanism explains the concentrated nutrient profile in microgreens.

Health Benefits of Microgreens

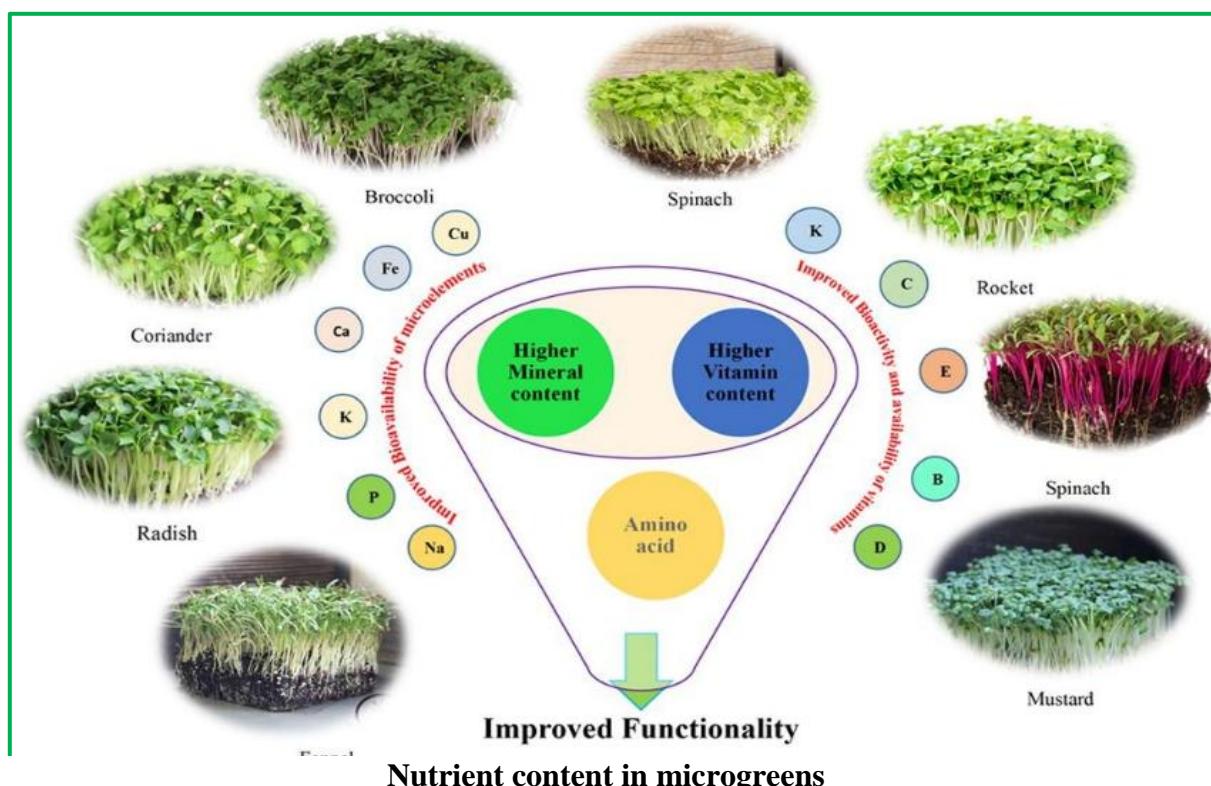
Antioxidant and Anti-Inflammatory Effects

Phenolics, flavonoids, and carotenoids in microgreens exert potent antioxidant activity. By neutralizing free radicals, they help reduce cellular damage and oxidative stress, which are linked to aging, cardiovascular diseases, diabetes, and neurodegenerative conditions.

Immune Support

High vitamin C and E content in microgreens supports immune system function. These vitamins enhance the activity of immune cells and contribute to antioxidant defense, aiding in the prevention of infections and inflammation.

Cardiovascular Health


Studies indicate that the bioactive compounds in microgreens may help improve lipid profiles, reduce oxidative stress, and lower inflammation, thereby supporting heart health and reducing the risk of cardiovascular diseases.

Cancer-Preventive Potential

Glucosinolates in Brassica microgreens, particularly sulforaphane, have been studied for their potential to modulate cellular detoxification enzymes and support chemoprotective pathways. While human clinical data are limited, laboratory evidence suggests promising cancer-preventive effects.

Nutrient Deficiency Mitigation

Microgreens provide concentrated sources of essential micronutrients, helping to address dietary gaps. Iron, zinc, calcium and vitamins in microgreens can support populations at risk of nutrient deficiencies and enhance overall dietary quality.

Incorporating Microgreens into the Diet

Microgreens are versatile and easy to integrate into daily meals:

- **Salads:** Add a handful of mixed microgreens for flavour, colour, and nutrient density.
- **Sandwiches and Wraps:** Layer microgreens to enhance texture and nutrition.
- **Smoothies:** Blend into smoothies for a phytonutrient boost.
- **Garnishes:** Use microgreens as toppings on soups, omelets, pizzas, or cooked dishes.

Consuming microgreens raw or adding them to dishes at the end of cooking preserves sensitive vitamins and phytonutrients, ensuring maximum nutritional benefit.

Cultivation and Sustainability

Microgreens are highly versatile and can be cultivated in a wide range of environments, making them accessible to both commercial producers and home gardeners. They can thrive in soil, hydroponic systems, or even on composted media, requiring minimal space and resources. Indoor cultivation under controlled light, temperature, and humidity allows for year-round production, regardless of seasonal constraints. This adaptability has made microgreens particularly attractive for urban farming initiatives, vertical gardens, and small-scale home setups where space is limited.

The rapid growth cycle of microgreens, typically 7–21 days, contributes to their sustainability and efficiency. Compared to traditional vegetables that require months to reach harvestable size, microgreens offer multiple harvests within a short period, maximizing yield per square foot. This short growth period also reduces water consumption and energy requirements, particularly when grown in hydroponic or controlled-environment systems. As a result, microgreens present a highly efficient food production model with lower environmental impact than many conventional crops.

From a resource perspective, microgreens require minimal fertilizers and pesticides, especially when grown in controlled environments. Their compact size and rapid harvest reduce the risk of pest and disease buildup, minimizing the need for chemical interventions. Additionally, their high nutrient concentration means that smaller quantities are needed to meet dietary requirements, further reducing the overall resource footprint per serving. This makes microgreens an environmentally friendly and sustainable option for enhancing nutrition in modern diets.

Finally, microgreens also hold promise for contributing to global food security and dietary diversity. Urban populations and regions with limited arable land can grow nutrient-dense greens year-round, improving access to essential vitamins and minerals. Their small-scale cultivation potential allows for decentralized food production, reducing transportation needs and food waste. By integrating microgreens into local food systems, communities can increase resilience against food shortages while promoting sustainable, nutrient-rich eating practices.

Challenges and Considerations

Despite their benefits, some considerations are important:

- **Food Safety:** Proper hygiene during cultivation and handling is crucial to prevent microbial contamination.
- **Bioavailability:** The absorption of nutrients may vary based on the compound and individual metabolism.
- **Cost:** While home cultivation is affordable, commercially produced microgreens can be expensive.
- **Complementarity:** Microgreens are nutrient-dense but should complement, not replace, a balanced diet rich in whole vegetables.

Conclusion

Microgreens have proven themselves as more than just aesthetically pleasing garnishes; they are nutritional powerhouses with the potential to play a key role in modern diets. Their compact size belies a remarkable concentration of phytonutrients, vitamins, minerals, and antioxidants, often surpassing the nutrient content of fully grown vegetables. By offering such a dense source of bioactive compounds in a small, flavourful package, microgreens provide an easy, practical and delicious way to enhance daily nutrition and support overall health. The health benefits associated with microgreens are diverse and well-documented. From antioxidant and anti-inflammatory effects to supporting immune function and cardiovascular health, these tiny greens can contribute significantly to disease prevention and

wellness promotion. Brassica microgreens, in particular, offer glucosinolates that may have cancer-preventive properties, while other varieties provide essential vitamins and minerals to help mitigate nutrient deficiencies. Regular inclusion of microgreens in the diet can therefore be an effective strategy to bridge nutritional gaps, enhance functional food intake, and improve dietary quality overall. In addition to their nutritional advantages, microgreens are sustainable, accessible, and versatile. They can be grown in limited spaces, indoors or outdoors, with minimal resources, making them suitable for urban agriculture, rooftop gardens, and home cultivation. Their rapid growth cycle and high yield per area also make them an environmentally friendly option. Combined with their ease of culinary integration—whether in salads, smoothies, or garnishes—microgreens are not just a trend but a meaningful addition to the modern diet, supporting both individual health and sustainable food practices.

References

1. Ghoora, D., Gawande, P. A., & Kawale, M. V. (2025). A review article on microgreens: An emerging nutritional superfood. *Advances in Botanical Research*, 63–68.
2. Hamouzová, K., Švecová, S., & Lachman, J. (2020). Microgreens – A new trend in human nutrition. *Vegetable Crops Research Bulletin*, 92, 39–52.
3. Kyriacou, M. C., & Roushanel, Y. (2018). Towards a new definition of quality for fresh fruits and vegetables. *Scientia Horticulturae*, 234, 463–469.
4. Kyriacou, M. C., et al. (2021). Microgreens: Novel foods with potential for enhancing dietary diversity. *Frontiers in Nutrition*, 8, 681.
5. Mallik, S., Prasad, K., & Ghosh, P. (2024). Microgreens as a source of functional food ingredients. *Trends in Food Science & Technology*, 148, 45–59.
6. Marti, R., Borrás-Linares, I., Herrero, M., & Senizza, B. (2021). Microgreens as a functional food: Nutritional composition, bioactivity, and health effects. *Antioxidants*, 10(6), 897.
7. Mir, S. A., & Teng, K. (2025). Development strategies and processing effects on the nutritional and bioactive composition of microgreens: A comprehensive review. *Applied Food Research*, 5(2), 101280.
8. Pirozi, M. R., Carvalho, L. M. J., dos Santos, P. H., Martins, M. A., & Pereira, G. A. G. (2015). Microgreens: A review of food safety considerations along the production chain. *Food Research International*, 76, 266–273.
9. Priyadarshini, V. M., Kumari, P. M., Porkodi, G., Anand, G., Ramamoorthy, P., & Abirami, R. (2025). Microgreens — Innovation for nutrient enhancement in current global scenario. *Asian Journal of Advances in Agricultural Research*, 25(8), 69–78.
10. Santamaria, P., & Elia, A. (2019). The nutrient content of microgreens and their potential health benefits. *Critical Reviews in Food Science and Nutrition*, 59(13), 2060–2076.
11. Santamaria, P., et al. (2022). Microgreens: Nutritional properties and health-promoting compounds. *Journal of Functional Foods*, 86, 104–119.
12. Santangelo, C., Pagano, I., & Russo, D. (2021). Microgreens and sprouts: Functional food with high antioxidant content. *Journal of Functional Foods*, 85, 104–112.
13. Turner, N. D., & Lougheed, M. (2020). Microgreen bioactive compounds: Nutritional value and health effects. *Food Research International*, 131, 109015.
14. Vishnupriya, S., & Ramkumar, M. (2023). Nutritional evaluation of selected microgreens and their antioxidant properties. *Journal of Food Biochemistry*, 47(3), e14422.
15. Xiao, Z., Lester, G. E., Luo, Y., & Wang, Q. (2012). Assessment of vitamin and carotenoid concentrations of emerging food products: Edible microgreens. *Journal of Agricultural and Food Chemistry*, 60(31), 7644–7651.
16. <https://www.livewholier.com/blogs/your-health/what-are-microgreens-nutritional-benefits?srsltid=AfmBOoo-5xmt8o-5gLEX6P4X79qsshu3A0Z84ZoRZqeOWeLAVDucS1B5>
17. <https://www.sciencedirect.com/science/article/abs/pii/S0963996922000953>
18. https://link.springer.com/chapter/10.1007/978-3-031-75678-8_27