

Polyamines: The Silent Influencers of Plant Growth and Stress Resilience

* Soumya Kumar Mishra

M.Sc. Scholar, Department of Plant Physiology, College of Agriculture,
OUAT, Bhubaneswar, Odisha, India

*Corresponding Author's email: soumyamishra078@gmail.com

Plants, though fixed in one location, show impressive biochemical flexibility that enables them to grow, reproduce, and survive in changing environmental conditions. Among the many molecules that drive these responses, polyamines stand out as small yet significant regulators of plant life. Often underestimated compared to traditional plant hormones, polyamines quietly affect nearly every stage of plant development—from seed germination to flowering, aging, and stress tolerance. Recent studies have highlighted polyamines as important metabolic signals and promising tools for sustainable farming.

What Are Polyamines?

Polyamines are small nitrogen-containing compounds with two or more amino groups. The main polyamines found in higher plants are putrescine, spermidine, and spermine, while compounds like thermospermine and cadaverine appear in specific tissues or species. Due to their ability to attract negatively charged cellular components, such as DNA, RNA, proteins, and membrane phospholipids, polyamines play a vital role in plant cells. In plant cells, polyamines exist in three main forms: free, conjugated, and bound. Free polyamines are active and take part directly in biological processes, while conjugated forms act as storage or regulatory pools. Their concentration and distribution vary among tissues, growth stages, and environmental conditions, showing their dynamic role in plant metabolism.

Biosynthesis and Breakdown: Maintaining Polyamine Balance

Polyamine metabolism in plants is carefully controlled through balanced biosynthesis, conversion, and breakdown. Putrescine, the central polyamine, is mainly produced through the arginine decarboxylase (ADC) pathway, though some plants also use the ornithine decarboxylase (ODC) pathway. Spermidine and spermine arise from sequential aminopropyl transfer reactions that depend on decarboxylated S-adenosylmethionine (dcSAM). This links polyamine synthesis with methylation and ethylene production. Polyamine levels are also regulated by diamine oxidases (DAO) and polyamine oxidases (PAO), enzymes that break them down. This catabolism produces biologically active molecules like hydrogen peroxide and gamma-aminobutyric acid (GABA), which act as signals during stress responses. Therefore, polyamine balance is not just a metabolic issue but a complex signaling network that connects growth and stress response.

Polyamines in Plant Growth and Development

Polyamines are key in plant growth by managing cell division, differentiation, and elongation. High levels of polyamines are commonly found in actively growing tissues like root tips, shoot tips, young leaves, and developing seeds. Their interaction with nucleic acids stabilizes chromatin structure and facilitates gene transcription, while their effect on ribosomes promotes protein synthesis. During seed germination, polyamine levels rise quickly during soaking and support early metabolic activity. Treating seeds with polyamines

has been shown to boost germination rates, seedling vigor, and early growth, especially under challenging conditions like cold or salty environments. Polyamines also play a crucial role in embryo development and organ formation. Studies show that applying putrescine externally can significantly improve somatic embryogenesis, while blocking polyamine production reduces embryo formation. Their buildup in growth tissues corresponds with active cell division and organ initiation.

Role in Flowering, Reproductive Growth, and Aging

The shift from vegetative to reproductive growth is another stage where polyamines have a strong impact. Increased levels of spermidine and spermine are typically found in floral buds and developing flowers. Research in *Arabidopsis* and ornamental plants indicates that higher polyamine levels support floral initiation, speed up bolting, and improve flower quality. Polyamines also help during aging, the last phase of plant development. Natural polyamine levels usually drop as leaves age, while oxidative damage goes up. Applying spermidine or spermine externally can delay aging by stabilizing membranes, reducing reactive oxygen species, and inhibiting ethylene production through competition for S-adenosylmethionine. These qualities can be useful in prolonging the shelf life of fruits, vegetables, and cut flowers.

Polyamines and Plant Stress Tolerance

One of the most studied aspects of polyamine biology is their role in biotic and abiotic stress tolerance. In conditions like drought, salinity, extreme temperatures, and pathogen attack, plants quickly gather polyamines. These compounds act as compatible solutes, stabilizing cellular structures and maintaining osmotic balance. Polyamines also have strong antioxidant properties. They scavenge free radicals and boost the activity of antioxidant enzymes such as superoxide dismutase and ascorbate peroxidase. Additionally, polyamine breakdown produces hydrogen peroxide, which serves as a signaling molecule to activate stress-responsive genes. Another key role of polyamines is regulating ion channels and membrane permeability. By influencing potassium and non-selective cation channels, polyamines help maintain ionic balance and lessen sodium toxicity in salty environments. In guard cells, they affect stomatal movement, controlling transpiration and water loss during drought.

Interaction with Plant Hormones

Polyamines don't act alone; they interact widely with traditional plant hormones. They share a metabolic precursor with ethylene, creating a competitive relationship that affects aging and stress responses. Polyamines also work together with gibberellins during seed germination and early growth, and with abscisic acid during stress response. Evidence suggests that polyamines can influence internal auxin levels, impacting root architecture and lateral root formation. This interaction positions polyamines as integrators of development and environmental signals rather than just secondary metabolites.

Agricultural Uses and Crop Improvement

The growing knowledge of polyamine biology has opened up new possibilities for improving crops and promoting sustainable agriculture. Practical applications include:

- Seed priming with polyamines to boost germination and early seedling growth
- Foliar application to improve growth, yield, and stress tolerance
- Post-harvest treatments to slow aging and extend shelf life

Biotechnological methods have further demonstrated the potential of polyamines. Transgenic plants that overexpress genes related to polyamine metabolism show improved resistance to drought, salinity, and temperature stress. More recently, genome-editing tools are being explored to fine-tune polyamine metabolism without adding foreign DNA. In the context of climate change and increasing environmental challenges, polyamines offer a promising, eco-friendly strategy for improving crop resilience and productivity.

Conclusion

Polyamines are small compounds with a surprisingly large impact on plant life. They regulate growth and development while protecting plants from stress and aging. Continued exploration of polyamine metabolism and signaling will enhance our understanding of plant biology and provide innovative methods for sustainable crop production. Harnessing the power of polyamines may be essential to meet future agricultural challenges in a changing climate.

References

1. Chen, D., Shao, Q., Yin, L., Younis, A., & Zheng, B. (2019). Polyamine function in plants: Metabolism, regulation on development, and roles in abiotic stress responses. *Frontiers in Plant Science*, 9, 1945.
2. Kolesnikov, Y. S., Kretynin, S. V., Filepova, R., Dobrev, P. I., Martinec, J., & Kravets, V. S. (2024). Polyamines metabolism and their biological role in plant cells: What do we really know? *Phytochemistry Reviews*, 23, 997–1026.
3. Mustafavi, S. H., Badi, H. N., Mehrafarin, A., Janda, T., Ghorbanpour, M., & Rafiee, H. (2018). Polyamines and their possible mechanisms involved in plant physiological processes and elicitation of secondary metabolites. *Acta Physiologiae Plantarum*, 40, 102.
4. Pathak, M. R., Teixeira da Silva, J. A., & Wani, S. H. (2014). Polyamines in response to abiotic stress tolerance through transgenic approaches. *GM Crops & Food*, 5(2), 87–96.
5. Wojtyla, Ł., Lechowska, K., Kubala, S., & Garnczarska, M. (2024). Polyamines in plant adaptation to stress. *International Journal of Molecular Sciences*, 25(23), 12588.