

Climate-Induced Constraints in Fruit Crops and Pathways toward Climate-Resilient Production Systems

*Kashish Dogra¹ and Sanjay Kumar²

¹Department of Fruit Science, Punjab Agricultural University, Ludhiana, Punjab

²Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab

*Corresponding Author's email: kashish-24101009@pau.edu

The Intergovernmental Panel on Climate Change (IPCC) describes climate change as a persistent alteration in temperature regimes and weather patterns, detectable through shifts in the average state and variability of climatic parameters. These changes arise from both natural climatic variability and human-induced modifications of the global atmosphere. Increasing temperatures, irregular rainfall, extended drought periods, soil salinization and a higher incidence of extreme weather events have collectively intensified abiotic and biotic stresses in fruit crops. In this context, climate-resilient fruit production emphasizes the integration of genetic improvement, improved orchard management practices, precision-based technologies and sustainable resource utilization to reduce the negative impacts of climate change.

Impact of Climate Change in Fruit Crops

- Impact on Phenology:** Elevated temperatures accelerate metabolic and physiological processes, resulting in earlier bud break, flowering and fruit maturation in many fruit crops. Warmer winters and springs reduce the duration of dormancy and hasten heat accumulation, causing premature phenological events (Rosenzweig *et al.*, 2007; Parmesan & Yohe, 2003). High temperature during floral initiation and anthesis negatively affects pollen viability, stigma receptivity and ovule fertilization. As a result, flowering becomes irregular and fruit set declines due to increased flower drop and poor pollination efficiency (Hedhly *et al.*, 2009). Many temperate fruit crops require a specific amount of chilling to break dormancy. Increased winter temperatures reduce chilling accumulation, leading to delayed, uneven or incomplete bud break and flowering. This phenological disruption adversely affects synchronization between vegetative growth and flowering (Luedeling *et al.*, 2011).
- Impact on Flowering:** Flowering is one of the most climate-sensitive phenological stages in fruit crops and climate change has markedly altered its timing, intensity and success. Changes in temperature regimes, rainfall patterns, and frequency of extreme events directly influence floral initiation, development and fruit set, thereby affecting productivity and yield stability. High temperature during floral initiation and anthesis impairs pollen viability, pollen tube growth and stigma receptivity. Consequently, fertilization efficiency declines, leading to increased flower drop and poor fruit set in several fruit species (Hedhly *et al.*, 2009). Climate change can disrupt the synchrony between flowering time and pollinator activity. Early or shifted flowering may not coincide with peak pollinator availability, reducing effective pollination and increasing the likelihood of poor fruit set, especially in insect-pollinated fruit crops (Memmott *et al.*, 2007).
- Fruit Development and Quality Deterioration:** Heat stress during fruit growth causes reduced cell division and expansion, leading to smaller fruits. Quality attributes such as

color development, firmness, acidity, sugar accumulation and aroma are negatively affected. Disorders such as sunburn, cracking and uneven ripening are frequently observed under high temperature conditions.

4. **Phenological mismatch with pollinators:** Rising temperatures often advance flowering in many fruit species, while pollinator emergence and population dynamics may respond differently to climatic cues, leading to temporal asynchrony between peak bloom and pollinator availability (Parmesan & Yohe, 2003). For example, in temperate fruit crops such as apple and pear, early flowering induced by warm springs has been reported to occur before optimal activity of bees, resulting in inadequate pollination and reduced fruit set (Memmott *et al.*, 2007). Similarly, in almond orchards, climate-induced variability in flowering phenology has been shown to increase dependence on managed pollinators because natural pollinator populations may not coincide with bloom periods (Kerr *et al.*, 2015). This mismatch reduces pollen transfer efficiency, increases flower drop, and ultimately lowers yield and fruit quality, particularly in insect-pollinated crops.
5. **Disturbance in Chilling Requirement Fulfilment:** major impact of climate change on flowering behavior of temperate fruit crops, caused primarily by rising winter temperatures. Many deciduous fruit species such as apple, pear, peach, cherry and almond require exposure to a specific duration of low temperatures (chilling hours or chilling units) during dormancy to ensure uniform bud break and normal flowering. Climate warming reduces the accumulation of winter chill, leading to incomplete or delayed dormancy release, which manifests as erratic, sparse and prolonged flowering, poor bud break and reduced synchronization between vegetative and reproductive growth (Luedeling *et al.*, 2011).

Climate-Resilient Strategies in Fruit Production:

1. **Genetic improvement and selection** play a central role in mitigating the adverse effects of climate change on fruit crops by developing cultivars and rootstocks with enhanced tolerance to heat, drought, salinity and biotic stresses. Climate change alters flowering time, fruit set and quality; therefore, breeding programs increasingly focus on traits such as heat tolerance, low chilling requirement, efficient water-use and stress-resilient reproductive biology. For example, the development and adoption of **low-chill apple (Anna, Tropical Beauty and Dorsett Golden)** and **peach cultivars (Shan-e-Punjab, Flordasun and Sharbati)** have helped sustain production in regions experiencing warmer winters, where traditional high-chill cultivars show irregular flowering and poor fruit set (Luedeling *et al.*, 2011)
2. **Orchard management practices** mitigate climate change impacts in fruit crops by improving orchard microclimate and resource-use efficiency. Canopy management through pruning and training enhances light penetration and air circulation, reducing canopy temperature, sunburn and transpiration stress. For example, regulated pruning in apple orchards lowers canopy temperature and improves fruit color and quality under high temperatures (Lakso & Corelli Grappadelli, 2014). Similarly, mulching with organic or plastic materials conserves soil moisture, moderates soil temperature and enhances microbial activity, thereby improving drought tolerance and nutrient availability in mango and citrus orchards, mulching significantly reduces soil evaporation and improves growth and yield under water-limited conditions (Shirgure *et al.*, 2014; Hatfield & Prueger, 2015).
3. **Water-Smart Technologies:** Water-smart technologies are essential for adapting fruit production systems to climate change by enhancing water-use efficiency and reducing drought stress. Micro-irrigation systems such as drip and sprinkler irrigation deliver water directly to the root zone, minimizing evaporation and runoff losses while maintaining optimal soil moisture conditions. In fruit crops like citrus and grapevine, drip irrigation has been shown to improve water-use efficiency and sustain yield and fruit quality under limited water availability (Fereres & Soriano, 2007). Additionally, deficit irrigation and regulated deficit irrigation strategies optimize water use by applying controlled water

stress during less sensitive phenological stages; For example, regulated deficit irrigation in peach and apple has successfully reduced irrigation water requirements without significant yield penalties while improving fruit quality attributes (Goldhamer *et al.*, 2002).

4. Protected and Precision Cultivation: **Protected and precision cultivation** enhance climate resilience in fruit crops by moderating temperature extremes and improving resource-use efficiency. Structures such as polyhouses, net houses and shade nets reduce heat load and radiation stress, leading to improved flowering, fruit set and quality. For example, shade-net cultivation in mango and citrus lowers canopy temperature and minimizes sunburn under high-temperature conditions (Sharma *et al.*, 2018). Precision tools, including sensors and decision-support systems, enable real-time monitoring of crop and soil conditions allowing site-specific irrigation and nutrient management in apple orchards, such approaches have improved water-use efficiency and yield stability under climatic variability (Zhang *et al.*, 2019).

Future Perspectives

Climate-resilient fruit production requires an integrated, multidisciplinary approach combining breeding, physiology, agronomy, and digital technologies. Future research should focus on climate-smart cultivars, climate-based crop modelling and farmer-friendly technologies for rapid adaptation. Strengthening policy support, extension services and capacity building will be crucial for large-scale adoption of resilient fruit production systems.

Conclusion

Climate change poses a serious threat to sustainable fruit production, but its adverse effects can be mitigated through climate-resilient strategies. The integration of tolerant genotypes, efficient resource management, precision technologies and sustainable orchard practices offers a viable pathway to ensure stable productivity, improved fruit quality and long-term sustainability of the fruit industry under changing climatic scenarios.

References

1. Fereres, E., & Soriano, M. A. (2007). Deficit irrigation for reducing agricultural water use. *J. Exp. Bot.*, 58, 147–159.
2. Goldhamer, D. A., Salinas, M., Crisosto, C., Day, K. R., Soler, M., & Moriana, A. (2002). Effects of regulated deficit irrigation on almond productivity and quality. *Acta Hortic.* 591, 213–220.
3. Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes: Effect on plant growth and development. *Weather Clim. Extremes*, 10, 4–10.
4. Hedhly, A., Hormaza, J. I., & Herrero, M. (2009). Global warming and sexual plant reproduction. *Trends Plant Sci.*, 14, 30–36.
5. Kerr, J. T., Pindar, A., Galpern, P., Packer, L., Potts, S. G., Roberts, S. M. & Pantoja, A. (2015). Climate change impacts on bumblebees converge across continents. *Science*, 349(6244), 177-180.
6. Lakso, A. N., & Corelli Grappadelli, L. (2014). Implications of pruning and training practices on orchard microclimate and fruit quality. *Acta Hortic.*, 1058, 245–252.
7. Luedeling, E., Zhang, M., & Girvetz, E. H. (2009). Climatic changes lead to declining winter chill for fruit and nut trees in California during 1950–2099. *PLoS one*, 4(7), e6166.
8. Memmott, J., Craze, P. G., Waser, N. M., & Price, M. V. (2007). Global warming and the disruption of plant–pollinator interactions. *Ecology letters*, 10(8), 710–717.
9. Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. *Nature*, 421(6918), 37–42.
10. Rosenzweig, C., Casassa, G., Karoly, D. J., Imeson, A., Liu, C., Menzel, A. & Parry, M. L. (2007). Assessment of observed changes and responses in natural and managed systems.

11. Sharma, R. R., Datta, S. C., & Varghese, E. (2018). Effect of protected cultivation on growth, yield and fruit quality of fruit crops under changing climate. *Indian J. Hortic.*, 75, 1–10.
12. Shirgure, P. S., Srivastava, A. K., & Huchche, A. D. (2014). Mulching for improving soil properties and water-use efficiency in fruit crops under semi-arid conditions. *Sci. Hortic.*, 168, 129–137.
13. Zhang, Y., Wang, X., Zhang, S., & Li, J. (2019). Precision horticulture technologies for sustainable fruit production under climate variability. *Comput. Electron. Agric.*, 162, 361–372.