

Genetic and Molecular Improvement of Natural Enemies for Sustainable Pest Management

*Bhaskar Shastri¹, Ashutosh Kushwaha¹ and Suray Singh Rajpurohit²

¹PhD Scholar, Govind Ballabh Pant University of Agriculture Technology, Pantnagar, Udhampur Singh Nagar (Uttarakhand)-263145

² PhD Scholar, Sher-e-Kashmir University of Agriculture Sciences and Technology, Jammu (Jammu and Kashmir)

*Corresponding Author's email: bhaskarshastri2000@gmail.com

Insect pests remain a major constraint to agricultural productivity, causing severe yield losses and increasing reliance on chemical pesticides. Indiscriminate pesticide use has led to pest resistance, environmental contamination, destruction of beneficial organisms and health risks to the farming community. Integrated Pest Management (IPM) provides a sustainable alternative, with biological control forming a central component through the use of predators, parasitoids and entomopathogenic microorganisms. However, the field performance of natural enemies is often limited by climatic stress, narrow host range, incompatibility with pesticides, and slow speed of action. This article reviews the major factors influencing the effectiveness of natural enemies and discusses strategies for their improvement using conventional and molecular approaches. Conventional techniques such as artificial selection and hybridization have been employed to enhance tolerance to temperature extremes, pesticides, and environmental stress. Recent advances in molecular biology, including mutagenesis, recombinant DNA technology and vector-less gene transfer methods, have enabled the development of genetically improved biological control agents with enhanced virulence, faster pest mortality and greater environmental adaptability. The article also addresses ecological and biosafety concerns associated with genetically modified natural enemies and emphasizes the need for careful risk assessment prior to field release. The adoption of genetically improved natural enemies can significantly benefit the farming community by reducing pesticide dependence, improving crop yield and quality, enhancing climate resilience and promoting environmentally sustainable agriculture.

Introduction

Insect pests are among the most serious constraints affecting agricultural productivity across the world. They cause significant quantitative and qualitative losses in crops, directly impacting farm income and food security. Continuous dependence on chemical pesticides has resulted in several adverse consequences, including pesticide resistance in pests, resurgence of secondary pests, contamination of soil and water, destruction of beneficial organisms and increased production costs. These challenges have highlighted the urgent need for sustainable and environmentally friendly pest management strategies.

Integrated Pest Management (IPM) has emerged as a holistic approach that combines multiple pest control tactics to keep pest populations below economic threshold levels while minimizing ecological damage. Among the various components of IPM, biological control occupies a central position due to its eco-friendly nature, long-term effectiveness, and compatibility with sustainable agriculture. Biological control involves the use of living organisms such as predators, parasitoids, entomopathogenic fungi, bacteria, nematodes and viruses to suppress pest populations.

Despite its advantages, biological control faces several limitations under field conditions. Natural enemies are living entities and their performance is strongly influenced by environmental factors, pesticide exposure and ecological compatibility. To overcome these constraints, scientific efforts have increasingly focused on improving natural enemies through conventional breeding and advanced molecular techniques. Genetic and molecular manipulation of natural enemies offers new opportunities to enhance their efficiency, adaptability and reliability under diverse agricultural conditions.

Factors Influencing the Effectiveness of Natural Enemies

Influence of Climatic Conditions

Climatic factors such as temperature, humidity, rainfall and solar radiation play a decisive role in determining the survival and efficacy of natural enemies. Predators and parasitoids introduced into agroecosystems may perform poorly if the prevailing climate differs from their native habitat. High temperatures can adversely affect development, reproduction and emergence, while low humidity may reduce longevity and activity.

Entomopathogenic fungi require specific temperature and moisture conditions for spore germination, host penetration and infection. Similarly, entomopathogenic nematodes are highly sensitive to desiccation, which reduces their shelf life and field persistence. Extremes of temperature often limit their infectivity and movement in soil. Therefore, climatic incompatibility remains a major barrier to the widespread adoption of biological control agents.

Host Range Constraints

Most entomopathogens exhibit a narrow host range due to their specific modes of infection and interaction with insect physiology. While this specificity is beneficial in reducing non-target effects, it also limits their effectiveness in cropping systems where multiple pest species coexist. Narrow host range reduces the flexibility of biocontrol agents and necessitates the use of multiple agents to manage different pests.

Interaction with Chemical Pesticides

In practical farming systems, biological control agents often coexist with chemical pesticides. Even when pesticides are applied at sub-lethal doses, they can adversely affect natural enemies by disrupting their behavior, development, reproduction and survival. Repellent and antifeedant effects of insecticides reduce the ability of predators and parasitoids to locate and attack prey. Certain fungicides and insecticides can inhibit spore germination, vegetative growth and sporulation of entomopathogenic fungi. Entomopathogenic nematodes may also be highly sensitive to commonly used insecticides.

Such negative interactions reduce the effectiveness of biological control and discourage farmers from adopting biocontrol-based IPM strategies.

Slow Speed of Action

Another limitation of biological control is the relatively longer time required to induce pest mortality. While chemical insecticides may kill insects within hours, biological agents often require several days or weeks. This delay occurs because pathogens must establish infection, multiply and produce toxins within the insect body. Although slower, biological control provides sustained pest suppression and reduces the likelihood of resistance development.

Improvement of Natural Enemies: Conventional Approaches

Artificial Selection

Artificial selection involves the deliberate breeding of individuals possessing desirable heritable traits such as temperature tolerance, pesticide resistance, higher fecundity, or improved predation capacity. The process includes identifying traits that limit field performance, collecting diverse populations, mass rearing, selection over successive generations and evaluating fitness under laboratory and field conditions.

Through artificial selection, natural enemies have been developed that tolerate extreme temperatures, resist commonly used insecticides and survive longer under adverse

conditions. Such improved strains show enhanced compatibility with IPM programs and perform better under real farming conditions.

Hybridization

Hybridization involves crossing genetically distinct individuals either within the same species or between different species. This approach helps combine beneficial traits such as heat tolerance, desiccation resistance and high reproductive capacity into a single strain. Hybrid strains of predators, parasitoids and entomopathogenic nematodes have demonstrated improved adaptability and effectiveness under stressful environments.

Despite their usefulness, conventional breeding methods are time-consuming and depend on the availability of sufficient genetic variability. Environmental complexity and limited knowledge of inheritance patterns further restrict their efficiency.

Molecular Approaches for Improving Natural Enemies

Mutagenesis

Mutagenesis refers to the induction of genetic changes using physical, chemical, or biological agents. Exposure to ultraviolet radiation, gamma rays, or chemical mutagens can create random mutations that may result in desirable traits such as thermotolerance, pesticide tolerance, or increased toxin production.

Mutagenesis has been successfully used to develop strains of entomopathogenic bacteria, fungi, and nematodes with enhanced virulence, improved sporulation and greater environmental tolerance. Compared to conventional breeding mutagenesis accelerates the generation of variability and shortens the time required for strain improvement.

Recombinant DNA Technology

Recombinant DNA technology represents a major breakthrough in the genetic improvement of biological control agents. This approach involves the isolation of specific genes responsible for desirable traits and their insertion into the genome of a target organism. Genes coding for insect-specific toxins, cuticle-degrading enzymes, stress tolerance proteins and ultraviolet resistance have been successfully introduced into entomopathogenic fungi, bacteria and viruses.

Genetically engineered natural enemies exhibit faster kill rates, higher virulence, improved tolerance to environmental stresses and enhanced compatibility with chemical inputs. Recombinant viruses and fungi have shown significant potential in reducing pest populations more rapidly than their wild counterparts.

Vector-less Gene Transfer Techniques

Several vector-less techniques have been developed to introduce foreign DNA into natural enemies:

- Protoplast fusion allows the combination of genetic material from different strains, resulting in enhanced enzyme activity and sporulation.
- Electroporation facilitates DNA uptake through temporary membrane pores created by electrical pulses.
- Microinjection enables direct delivery of genes into eggs or embryos, particularly useful for arthropod predators and parasitoids.
- Microprojectile bombardment propels DNA-coated particles into cells, allowing direct gene transfer without biological vectors.

These techniques expand the range of organisms that can be genetically improved and provide flexibility in trait enhancement.

Risks and Concerns Associated with Genetically Modified Natural Enemies

Despite their advantages, genetically modified natural enemies raise ecological, environmental, and ethical concerns. Potential risks include genetic contamination of wild populations increased competitiveness leading to invasiveness, unintended effects on non-target organisms, and horizontal gene transfer to other microorganisms. Once released into the environment, genetically modified organisms cannot be easily withdrawn, making risk assessment and regulatory oversight essential.

Therefore, the development and deployment of genetically improved natural enemies must be guided by strict biosafety protocols, ecological monitoring and transparent regulatory frameworks.

Key Considerations for Genetic Improvement Programs

Successful genetic improvement projects require a clear understanding of the biological and ecological limitations of natural enemies. Detailed knowledge of their life cycle, behavior, genetics and interaction with the environment is essential. Availability of genetic variability, economic feasibility, field performance and long-term sustainability should guide decision-making. Improved strains must demonstrate consistent effectiveness under farmer field conditions before large-scale release.

How Genetic Improvement of Natural Enemies Benefits the Farming Community

Genetic and molecular improvement of natural enemies directly benefits the farming community in multiple ways:

1. Reduced Dependence on Chemical Pesticides
2. Stable and Long-Term Pest Control
3. Improved Crop Yield and Quality
4. Environmental Protection
5. Climate Resilience
6. Compatibility with Organic and Sustainable Farming
7. Economic Sustainability

Conclusion

A comprehensive understanding of the factors influencing natural enemies is essential for strengthening biological control within Integrated Pest Management systems. While conventional breeding methods have contributed significantly to improving adaptability and tolerance, molecular and genetic approaches offer unprecedented precision and efficiency. The development of improved natural enemies through mutagenesis, recombinant DNA technology and advanced gene transfer techniques holds immense promise for sustainable agriculture.

When applied responsibly and supported by robust biosafety assessments, genetically improved biological control agents can serve as powerful tools for reducing chemical pesticide dependence, protecting the environment and improving farmer livelihoods. Harnessing these advanced technologies will be a key step toward resilient, productive and eco-friendly agricultural systems where natural enemies truly function as “farmers’ friends.”

References

1. FAO. (2018). Integrated pest management: Guidelines and case studies. Food and Agriculture Organization of the United Nations, Rome.
2. Hoy, M. A. (1985). Recent advances in genetics and genetic improvement of arthropod natural enemies. *Biological Control*, 1, 1–20.
3. Ruberson, J. R. and Roberts, P. M. (2005). Impact of insecticides on parasitoids in IPM systems. *Journal of Economic Entomology*, 98, 1060–1069.
4. Routray, S., Jalali, S. K., and Venkatesan, T. (2016). Genetic improvement of natural enemies: Concepts and strategies. *Journal of Biological Control*, 30, 1–12.