

Seeing Seeds with Light: How Near-Infrared Spectroscopy Is Transforming Crop Breeding

*Pratikshya Swain

M.Sc. Scholar, Department of Plant Breeding and Genetics, Odisha University of Agriculture and Technology (OUAT), Bhubaneswar, Odisha, India – 751003

*Corresponding Author's email: pratikshy99@gmail.com

Crop improvement today demands speed, precision, and sustainability. Traditional methods of assessing seed quality and biochemical traits are accurate but slow, destructive, and resource-intensive. Near-Infrared Spectroscopy (NIRS) has emerged as a powerful alternative, offering rapid, non-destructive, and reliable analysis of seeds and plant materials using light-based principles. This article presents NIRS as a transformative tool in modern crop breeding, explaining its working principles in simple terms and highlighting its applications in seed quality evaluation, early generation selection, germplasm characterization, forage breeding, disease detection, and high-throughput field phenotyping. By integrating NIRS with digital tools and genomic selection, breeders can make informed decisions earlier in the breeding cycle. The article emphasizes how this technology supports sustainable agriculture by saving time, resources, and genetic material, while improving crop productivity and quality.

Keywords: Near-Infrared Spectroscopy, Crop Breeding, Seed Quality, Non-destructive Techniques, High-Throughput Phenotyping, Genomic Selection

Introduction: When Light Meets Agriculture

Plant breeding has always relied on careful observation—of plant height, grain size, colour, yield, and resistance to stress. Yet many of the most important traits that define crop quality remain hidden inside seeds and tissues. Protein content, oil concentration, fibre composition, and even early signs of disease are invisible to the naked eye. Traditionally, uncovering these traits has required destructive, time-consuming laboratory analyses. In recent years, a quiet technological revolution has begun to change this reality. Near-Infrared Spectroscopy (NIRS), a technique based on the interaction of light with matter, is enabling breeders to “see” inside seeds and plants without cutting, grinding, or destroying them. By using light as a diagnostic tool, NIRS is reshaping crop breeding into a faster, smarter, and more sustainable science.

Understanding Near-Infrared Spectroscopy in Simple Terms

Near-Infrared Spectroscopy works in a surprisingly elegant way. When near-infrared light—lying just beyond the visible region of the electromagnetic spectrum—falls on a biological sample such as a seed or leaf, part of that light is absorbed by chemical bonds within the material. These bonds, especially those involving carbon–hydrogen, nitrogen–hydrogen, and oxygen–hydrogen, vibrate in characteristic ways when they absorb energy. Each type of molecule produces a unique spectral pattern, much like a fingerprint. NIRS instruments capture this reflected or transmitted light and convert it into a spectrum. Using statistical models built from known reference samples, the spectrum can then be translated into estimates of chemical composition. Within seconds, traits such as moisture, protein, oil, starch, or fibre content can be predicted—without harming the sample.

Why Crop Breeders Need NIRS

Modern breeding programmes deal with thousands of samples across multiple generations. Conventional chemical analyses, though accurate, are slow, expensive, and destructive. NIRS addresses these constraints by offering speed, efficiency, and non-destructive testing. For breeders, this means that valuable seeds no longer need to be sacrificed for analysis. A single seed can be scanned, evaluated, and still planted if it shows promise. This advantage alone makes NIRS especially powerful in early generations of breeding, where seed availability is limited and decisions must be made quickly.

Applications of NIRS in Crop Breeding

- 1. Seed Quality Assessment:** Seed quality traits such as protein, oil, starch, and moisture determine both nutritional value and market price. NIRS has become a trusted tool for rapid quality evaluation in cereals, pulses, oilseeds, and legumes. Because intact seeds can be analysed, breeders and seed technologists can assess large numbers of samples with minimal labour.
- 2. Early Generation Selection:** Early generations (F_2 to F_4) pose a major challenge in breeding programmes. Seed quantity is low, and traditional quality analysis is impractical. NIRS allows breeders to scan individual seeds and identify superior lines at a very early stage. By advancing only the most promising material, breeding cycles can be shortened and efficiency improved.
- 3. Germplasm Characterisation and Diversity Analysis:** Gene banks conserve vast collections of crop diversity, much of which remains underexplored. NIRS provides a rapid way to characterise germplasm for biochemical traits and uncover hidden diversity. By combining spectral data with multivariate analysis, accessions can be grouped, classified, and selected more effectively for breeding use.
- 4. Forage Breeding and Livestock Nutrition:** In forage crops, traits such as digestibility and Neutral Detergent Fibre (NDF) directly influence animal performance. NIRS has proven highly effective in estimating these parameters, enabling breeders to develop forage varieties that support better livestock productivity and health.
- 5. Screening for Anti-Nutritional Factors:** Certain plant compounds—such as glucosinolates in Brassica crops or tannins in legumes—reduce nutritional quality. NIRS serves as a rapid screening tool to identify lines with lower concentrations of these undesirable components, supporting the development of healthier food and feed crops.
- 6. Disease Detection and Seed Health:** NIRS can also detect subtle biochemical changes associated with fungal infections and seed deterioration, often before visible symptoms appear. This opens new possibilities for early disease detection and seed health monitoring.
- 7. High-Throughput Phenotyping: Taking NIRS to the Field:** One of the most exciting developments is the integration of NIRS with high-throughput phenotyping platforms. Mounted on drones, tractors, or field robots, NIR sensors can scan crops directly in the field. Reflected signals from plant canopies provide information on biomass, nitrogen status, chlorophyll content, moisture, and stress. This approach allows breeders to collect objective, real-time data across large experimental plots—something that would be impossible with manual measurements alone. In an era of climate variability, such rapid phenotyping tools are becoming essential.
- 8. NIRS as a Partner to Genomic Selection:** Beyond direct trait measurement, NIRS is emerging as a valuable companion to genomic selection. Near-infrared spectra capture biochemical variation that is often under genetic control. Studies have shown that NIR data can reflect genetic relationships among genotypes and deliver prediction accuracies comparable to molecular marker-based methods. Because NIRS is faster and more affordable than genotyping, it offers a practical alternative or complement, particularly in large breeding populations or in crops where genotyping costs remain high.

Evidence from Research Studies

Research across crops such as rice, sunflower, maize, and wheat has demonstrated the reliability of NIRS for variety identification, quality prediction, and screening of genetically modified lines. While raw spectra alone may not always provide clear separation, appropriate spectral pre-processing and statistical modelling significantly enhance accuracy. These findings highlight an important point: NIRS is not a replacement for plant breeders or laboratory analysis, but a powerful decision-support tool that strengthens breeding strategies.

Limitations and Future Directions

Despite its strengths, NIRS is not without limitations. Accurate predictions depend on robust calibration models built from high-quality reference data. Environmental effects, sample heterogeneity, and instrument variation can influence results. However, rapid advances in machine learning, artificial intelligence, and sensor miniaturisation are steadily addressing these challenges. Portable and handheld NIR devices are becoming more affordable and accessible, bringing advanced analytical capability closer to farmers' fields and seed processing units. The future of NIRS lies in its integration with digital agriculture, data analytics, and precision breeding.

Conclusion: A Technology with Light but Lasting Impact

Near-Infrared Spectroscopy represents a subtle yet transformative shift in crop breeding. By replacing destructive testing with rapid, non-invasive analysis, it empowers breeders to make better decisions earlier and faster. From seed quality assessment and germplasm characterisation to field phenotyping and genomic selection, NIRS is proving its value across the breeding pipeline. As agriculture moves towards sustainability, efficiency, and data-driven innovation, technologies like NIRS will play a defining role. Using nothing more than light, breeders are gaining deeper insight into crops—helping ensure better yields, improved nutrition, and a more resilient agricultural future.

References

1. Beć, K. B., Grabska, J., & Huck, C. W. (2021). Principles and applications of miniaturized near-infrared (NIR) spectrometers. *Chemistry – A European Journal*, 27(5), 1514–1532.
2. Chadalavada, K., Anbazhagan, K., Ndour, A., Choudhary, S., Palmer, W., Flynn, J. R., & Kholová, J. (2022). NIR instruments and prediction methods for rapid access to grain protein content in multiple cereals. *Sensors*, 22(10), 3710.
3. Chandrasekaran, I., Panigrahi, S. S., Ravikanth, L., & Singh, C. B. (2019). Potential of near-infrared (NIR) spectroscopy and hyperspectral imaging for quality and safety assessment of fruits. *Food Analytical Methods*, 12, 2438–2458.
4. Hao, Y., Geng, P., Wu, W., Wen, Q., & Rao, M. (2019). Identification of rice varieties and transgenic characteristics using near-infrared spectroscopy and chemometrics. *Molecules*, 24(24), 4568.
5. Mortensen, A. K., Gislum, R., Jørgensen, J. R., & Boelt, B. (2021). The use of near-infrared spectroscopy to characterize seed structures and quality. *Agriculture*, 11(4), 301.
6. Ozaki, Y., Huck, C., Tsuchikawa, S., & Engelsen, S. B. (2020). *Near-infrared spectroscopy: Theory, spectral analysis, instrumentation, and applications*. Springer Nature.
7. Rahman, A., & Cho, B. K. (2016). Assessment of seed quality using non-destructive measurement techniques. *Seed Science Research*, 26(4), 285–305.
8. Rincent, R., Charpentier, J. P., Faivre-Rampant, P., Paux, E., Le Gouis, J., Bastien, C., & Segura, V. (2018). Phenomic selection based on near-infrared spectroscopy. *Theoretical and Applied Genetics*, 131, 393–406.
9. Venkatesan, S., Masilamani, P., Janaki, P., & Rajkumar, P. (2020). Role of near-infrared spectroscopy in seed quality evaluation. *Agricultural Reviews*, 41(2), 106–115.