

E-Biodiversity: Exploring Life on Earth in the Digital Age

*Rutusha Das

M.Sc. Scholar, Department of Agricultural Biotechnology, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha-751003, India

*Corresponding Author's email: rutushadas@gmail.com

E-Biodiversity represents the integration of digital technologies with biodiversity science to improve the collection, management, analysis, and sharing of biological data. With increasing threats to biodiversity due to climate change, habitat loss, and human activities, traditional methods of biodiversity assessment are no longer sufficient. e-Biodiversity uses online databases, geographic information systems, citizen science platforms, and artificial intelligence to document species distributions, monitor ecosystem changes, and support conservation decision-making. Digital platforms such as global biodiversity repositories and mobile applications have enabled large-scale participation and improved accessibility of biodiversity information. By enhancing data availability and analytical capacity, e-biodiversity plays a crucial role in biodiversity conservation, research, education, and policy formulation. This digital approach strengthens global efforts to understand and protect biological diversity in a rapidly changing world.

Keywords: e-Biodiversity; Biodiversity Informatics; Digital Conservation; Citizen Science; Species Documentation; Biodiversity Databases; Global Biodiversity Information Facility (GBIF); iNaturalist; Data Digitization

Introduction

Biodiversity alludes to the enormous life varieties present on Earth, including plants, animals, microorganisms, and forming cumbersome ecosystem where they are thriving. It is essential for maintaining ecological balance, providing food and medicine, regulating climate, and supporting human livelihoods. However, biodiversity across the globe is declining at an alarming rate due to deforestation, climate change, pollution, urbanization, and overexploitation of natural resources (WWF, 2022). In recent years, digital technologies have transformed how scientists study and protect biodiversity. This transformation has given rise to a new concept known as e-Biodiversity. The term refers to the use of electronic tools, online platforms, databases, and information systems to collect, store, analyze and share biodiversity-related data. e-Biodiversity makes it possible to understand life on Earth at a much larger scale and with greater accuracy than ever before (Hardisty & Roberts, 2013). By combining biology with computer science, geographic information systems (GIS), artificial intelligence, and big data, e-biodiversity is changing the way we observe nature. It allows researchers, policymakers, and even ordinary citizens to participate in documenting and conserving living organisms. This article explores the meaning of e-Biodiversity, its components, importance, applications, challenges, and future potential.

Understanding E-Biodiversity

e-Biodiversity is closely connected to the field of biodiversity informatics, which focuses on managing biological data using digital tools. Biodiversity informatics involves collecting information about species, ecosystems, and habitats and organizing them into structured databases that can be easily accessed and analyzed.

Traditionally, biodiversity data were recorded in notebooks, stored in museums, or published in printed journals. These methods made information difficult to share, slow to update, and limited to a small audience. With the development of computers and the internet, it became possible to digitize this information and make it available worldwide. This digital shift laid the foundation for e-biodiversity.

e-biodiversity includes:

- Digital species databases
- Online biodiversity platforms
- Mobile applications for species identification
- Satellite-based monitoring systems
- Artificial intelligence tools for data analysis

These technologies work together to provide a comprehensive picture of life on Earth and how it changes over time.

Digital Platforms Supporting E-Biodiversity

One of the most important aspects of e-Biodiversity is the development of global digital platforms that store and share biodiversity data.

1. iNaturalist

iNaturalist is a popular citizen science platform where users upload photographs or recordings of organisms they observe in nature. The community helps identify species, and once confirmed, these observations become valuable scientific records. The platform uses artificial intelligence to suggest possible identifications, making it easy for beginners to participate (iNaturalist, 2024).

This platform has millions of users and has contributed a massive amount of data to scientific research. Many conservation organizations use iNaturalist data to track species distribution, detect invasive species, and study seasonal changes.

2. Global Biodiversity Information Facility (GBIF)

GBIF is an international network that provides free access to biodiversity data from museums, universities, research institutes, and citizen science projects. It acts as a global library of life, allowing scientists to study biodiversity patterns on a global scale (GBIF, 2023).

3. Encyclopedia of Life (EOL)

The Encyclopedia of Life is another digital initiative that aims to document all known species. It provides information on species descriptions, habitats, behaviour, and images. EOL serves as an educational tool for students, teachers, and researchers (EOL, 2023).

Together, these platforms form the backbone of e-Biodiversity by making data open, accessible, and usable.

Why E-Biodiversity is Important

1. Supporting Conservation Efforts

One of the most important benefits of e-Biodiversity is its role in conservation. By analyzing digital biodiversity data, scientists can identify regions with high species richness, track endangered species, and monitor ecosystem changes. This helps governments and conservation agencies design better protection strategies (Hardisty & Roberts, 2013).

For example, digital mapping tools can show how forests are shrinking or how coral reefs are bleaching. Such information allows quick action before irreversible damage occurs.

2. Encouraging Public Participation

e-Biodiversity has opened the door for ordinary people to contribute to scientific research. This approach is known as **citizen science**. Through mobile apps and online platforms, people can record birds in their backyard, insects in gardens, or plants in parks.

This involvement increases data collection and builds awareness about environmental issues. Studies show that citizen science strengthens the connection between people and nature (Chandler et al., 2017).

3. Advancing Scientific Research

Digital tools allow scientists to process massive datasets in a short time. Artificial intelligence can identify species from images, detect patterns, and predict future changes in ecosystems. Machine learning algorithms can recognize animal calls, classify plants, and track migration routes (Wäldchen & Mäder, 2018).

Applications of E-Biodiversity

e-Biodiversity is used in many fields:

1. Environmental Monitoring

Satellites, drones, and sensors collect real-time data on forests, oceans, and wildlife. These digital systems help detect deforestation, illegal fishing, and habitat destruction (Pimm et al., 2015).

2. Climate Change Studies

Digital biodiversity records help scientists understand how climate change is affecting species distribution. Some species are moving to higher altitudes or colder regions, and e-Biodiversity tools make it easier to track these shifts.

3. Education and Awareness

Online biodiversity platforms are widely used in schools and universities. Students can explore species from around the world without leaving their classrooms. This digital access inspires curiosity and environmental responsibility.

4. Policy and Planning

Governments use digital biodiversity data to design protected areas, assess environmental impact, and plan sustainable development projects.

Challenges in E-Biodiversity: Despite its many advantages, e-Biodiversity faces several challenges.

1. Data Quality

Not all data collected online are accurate. Some citizen science observations may be incorrect or incomplete. This requires expert verification and automated quality control systems (Kosmala et al., 2016).

2. Digital Divide

Many regions in the world lack access to advanced technology or internet connectivity. As a result, biodiversity data from these areas remain limited, creating knowledge gaps.

3. Ethical Concerns

Open access to biodiversity data can sometimes pose risks. For example, publishing the exact locations of rare species can make them vulnerable to illegal hunting or trade. Therefore, sensitive data must be handled carefully (Chapman, 2020).

The Future of E-Biodiversity

The future of e-Biodiversity looks promising. New technologies such as artificial intelligence, virtual reality, and blockchain are expected to enhance data security, analysis, and visualization. In the coming years, digital biodiversity systems may allow scientists to simulate ecosystems, predict species extinction risks, and test conservation strategies before implementing them in the real world. Increased international collaboration and open data sharing will further strengthen E-Biodiversity efforts.

References

1. Chandler, M., See, L., Copas, K., Bonde, A. M., López, B. C., Danielsen, F., Legind, J. K., Masinde, S., Miller-Rushing, A. J., Newman, G., Rosemartin, A., & Turak, E. (2017). Contribution of citizen science towards international biodiversity monitoring. *Biological Conservation*, 213, 280–294.
2. Chapman, A. D. (2020). *Current best practices for biodiversity data quality*. GBIF Secretariat.
3. Encyclopedia of Life. (2023). *About the Encyclopedia of Life*.
4. GBIF Secretariat. (2023). *What is GBIF?*

5. Hardisty, A., & Roberts, D. (2013). A decadal view of biodiversity informatics: Challenges and priorities. *BMC Ecology*, 13(1), Article 16.
6. iNaturalist. (2024). *About iNaturalist*.
7. Kosmala, M., Wiggins, A., Swanson, A., & Simmons, B. (2016). Assessing data quality in citizen science. *Frontiers in Ecology and the Environment*, 14(10), 551–560.
8. Page, R. D. M. (2008). Biodiversity informatics: The challenge of linking data and the role of shared identifiers. *Briefings in Bioinformatics*, 9(5), 345–354.