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he integration of artificial intelligence (Al) with modern biotechnologies—genomic

selection, genome editing (e.g., CRISPR/Cas), and high-throughput phenotyping—
promises a transformational acceleration in crop improvement. By combining large, multi-
modal biological datasets with predictive machine-learning models and precise molecular
tools, breeders can shorten cycle times, increase selection accuracy for complex traits (yield,
stress tolerance, disease resistance), and design novel allelic combinations that were
previously inaccessible. This review synthesizes recent progress in Al methods for predictive
breeding, highlights how Al complements biotechnology workflows, surveys applied
examples and case studies, and discusses practical, ethical, and regulatory challenges. We
close by outlining practical implementation pathways and future research priorities to realize
Al-biotech synergy for sustainable, climate-resilient agriculture.

Introduction

Crop improvement is a fundamental component of agricultural development, directly
influencing crop productivity and food security. Traditional breeding practices have achieved
notable success over time; however, their progress is often limited by long breeding cycles
and reduced efficiency under increasing pressures such as climate variability, pest outbreaks,
and declining natural resources. The introduction of modern biotechnological tools has
enhanced precision in crop improvement, yet these technologies generate large and complex
datasets that are difficult to interpret using conventional analytical methods. In this context,
artificial intelligence has gained importance as a supportive tool capable of processing
complex biological information and assisting in informed selection decisions. The combined
application of artificial intelligence and biotechnology is gradually reshaping crop breeding
into a more precise, efficient, and data-oriented approach for developing improved crop
varieties.

Key biotechnology building blocks

e Genomic Selection (GS): Uses genome-wide markers and prediction models to estimate
breeding values, allowing selection without extensive phenotyping of all candidates. GS
shortens breeding cycles and increases selection intensity when deployed correctly.

e Genome editing (CRISPR/Cas and related tools): Enables targeted modification of
genes and regulatory elements to create desired alleles or knockouts with high precision,
accelerating trait development beyond what is achievable by selection alone.

e High-Throughput Phenotyping (HTP): Field and controlled-environment platforms
(drones, proximal sensors, robotics, imaging) collect temporal, spatial, and multi-spectral
trait measurements at scale, producing the phenotypic data needed to train Al models.

Al and ML toolset for breeding
Al applied to breeding includes regularized linear models (e.g., GBLUP, ridge regression),
Bayesian models, ensemble methods, gradient-boosted trees, and deep neural networks. Deep
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learning—especially convolutional neural networks and transformer architectures—has
proven effective for image-based phenotyping and learning complex genotype—phenotype
relationships when sufficiently large training sets are available. Integrative models that fuse
genotype, phenotype, environment, and management data yield the best predictions for
genotype x environment interactions.

Integrative workflows and applications

1. Data architecture: from sensors to decision

A typical Al-biotech breeding pipeline follows: (1) design and curate training populations,
(2) generate genomic and high-throughput phenotypic data, (3) preprocess and harmonize
multi-modal inputs (genotypes, images, spectral indices, weather, soil), (4) train predictive
models for breeding values or phenotype classes, and (5) act—via selection decisions,
crossing strategies, or genome editing. Robust metadata, standardized ontologies, and FAIR
data practices are prerequisites for reproducible Al models.

2. Genomic selection enhanced by ML and DL

Traditional GS methods (GBLUP, Bayesian) perform well for many traits; however, complex
traits with nonlinear genotype—phenotype maps benefit from ML/DL methods that capture
epistasis and higher-order interactions. Hybrid approaches—combining genomic best linear
unbiased prediction with feature extraction via neural networks or kernel methods—often
improve predictive accuracy, particularly when integrated with environment covariates and
HTP features. Several recent studies demonstrate meaningful accuracy gains and faster
realized genetic progress when ML-enhanced GS is deployed in breeding pipelines.

3. Phenotyping: deep learning, image analytics, and temporal modeling

Advances in computer vision and DL enable automated scoring of canopy traits, disease
severity, root architecture proxies, and stress responses from RGB, multispectral,
hyperspectral, thermal, and LIDAR data. Temporal models (recurrent networks, temporal
convolutional networks) model growth trajectories and stress responses over time, improving
trait heritability estimates and selection decisions. High-quality labeled datasets and domain
adaptation techniques are critical to transfer models from controlled trials to noisy field
conditions.

4. Al meets genome editing: design and prioritization

Al assists genome editing in multiple ways: predicting functional effects of sequence
changes, optimizing guide RNA design for specificity and efficiency, suggesting target genes
by integrating GWAS/GS signals with transcriptomics and network models, and even
designing synthetic regulatory variants. Models trained on protein structure predictors and
sequence-function maps (recent progress in protein and sequence modeling) further enhance
the design of novel Cas variants and delivery vectors tailored for plant systems. The result is
a closed loop where Al directs edits and edited lines feed back to model retraining.

Case studies and applied examples

e Accelerated yield selection: Genomic selection combined with HTP-based canopy
temperature and NDVI features has improved early-generation selection for drought
tolerance, shortening the selection timeline and increasing realized yield stability in multi-
environment trials.

o Disease detection and management: Deep learning models deployed on phones and
edge devices enable in-field disease detection and triage; these phenotypes feed into
selection indices for disease resistance. (Multiple recent works demonstrate high accuracy
for leaf disease classification in several crops.)

e Al-guided editing: Examples exist where Al prioritized candidate loci for editing by
combining GWAS peaks with co-expression networks and functional annotations—
leading to edits that improve pathogen resistance or nutrient use efficiency in pilot
studies.
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Economic and deployment considerations

Deployment requires investments in sensors, data infrastructure, and human capacity. Smaller
breeding programs can access cloud-based platforms, federated learning, and public datasets
to scale without capital-intensive infrastructure. Federated approaches preserve data privacy
while enabling model sharing across institutions. Cost—benefit analyses indicate that the up-
front costs are often offset by faster genetic gains and reduced field trial burdens when Al is
well integrated.

Conclusion

Al and modern biotechnologies are complementary forces that, when integrated thoughtfully,
can transform plant breeding from an empirical endeavor into an accelerated, predictive
science. Genomic selection augmented by ML, deep learning—enabled phenomics, and Al-
guided genome editing form a pipeline that reduces breeding cycle time, enhances selection
accuracy for complex traits, and opens the possibility of designing novel allelic combinations.
Overcoming data quality, interpretability, regulatory, and equity challenges will require
interdisciplinary collaboration, standardized datasets, and policies that support responsible
deployment. With these steps, Al-driven crop breeding can make major contributions to food
security and sustainable agriculture in the face of climate change.
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