

Urban Heat Island (UHI): Causes, Impacts, and Mitigation Strategies

*Prajwala, B.¹, Chidanand Gowda, M. R.² and V. Sahana Patil²

¹Ph.D. Scholar (Agronomy), University of Agricultural Sciences, GKVK, Bengaluru

²Ph.D. Scholar, Dept. of Agronomy, University of Agricultural Sciences, Mandyā

*Corresponding Author's email: prajwalab12@gmail.com

Urban Heat Island (UHI) is a significant environmental issue where urban areas become warmer than their surrounding rural regions due to human activities and urban development. The expansion of cities replaces natural land cover with concrete, asphalt, and buildings, which absorb and retain heat more efficiently. Reduced vegetation and green spaces further limit cooling through evaporation and shade. Additionally, human activities such as transportation, industrial operations, and energy consumption generate waste heat, intensifying urban warming. The UHI effect increases energy demand for cooling, raises air pollution levels, and poses health risks like heat stress and respiratory diseases. It also affects nearby agricultural lands by altering microclimate, increasing water demand, and reducing crop productivity. Cities such as Delhi, New York, and Bangalore show high UHI intensity due to dense infrastructure and population. Mitigation strategies such as urban green spaces, cool roofs, reflective pavements, and sustainable planning are essential to reduce UHI impacts. Integrating these measures can improve urban livability, reduce energy costs, and support climate resilience.

Introduction

Urban Heat Island (UHI) is a growing environmental concern in modern cities, where urban areas become significantly warmer than their surrounding rural regions. This phenomenon occurs due to rapid urbanization, which replaces natural land cover such as forests, grasslands, and water bodies with concrete, asphalt, and buildings. These urban surfaces absorb and store large amounts of solar energy during the day and release it slowly at night, causing elevated temperatures that persist even after sunset. The reduction in vegetation further limits natural cooling through shade and evapotranspiration, while increased human activities such as transportation, industrial operations, and energy consumption produce additional waste heat. The dense layout of buildings and narrow streets creates urban canyons that trap heat and restrict airflow, amplifying the warming effect. UHI is most severe during summer months and heat waves, increasing the risk of heat stress, dehydration, and respiratory problems among urban residents. It also raises energy demand for air conditioning, leading to higher electricity consumption and greenhouse gas emissions. Moreover, UHI impacts surrounding peri-urban and agricultural areas by altering microclimates and increasing water stress. Therefore, addressing UHI is essential for sustainable urban planning and climate resilience.

Concept of Urban Heat Island (UHI)

Urban Heat Island (UHI) refers to the phenomenon where urban areas are significantly warmer than their rural surroundings. This happens because urban surfaces absorb more solar energy and release it slowly. There are two types of UHI:

- 1. Surface UHI:** This type is measured using satellite images and refers to land surface temperature. It is more visible in cities where the surface material is dark and heat-absorbing.
- 2. Atmospheric UHI:** This type is measured using air temperature near the ground and is more relevant for human comfort and health.

UHI intensity depends on:

- City size and population density
- Land use and type of building materials
- Amount of vegetation and water bodies
- Human activities and energy consumption

In some cities, the temperature difference can reach **5–8°C**, especially during nights and heat waves.

Causes of Urban Heat Island

UHI develops due to multiple factors related to urban infrastructure and human activities. Some key causes include:

- 1. Loss of Vegetation:** Trees and plants provide shade and cool the air through evapotranspiration. When vegetation is removed, cities lose natural cooling.
- 2. Heat Absorbing Materials:** Urban buildings, roads, and pavements are made of materials like concrete and asphalt, which absorb heat and store it. These materials release heat slowly at night, keeping cities warm.
- 3. Waste Heat from Human Activities:** Cities produce heat from:
 - Vehicles and traffic
 - Industries and factories
 - Air conditioners and cooling systems
 - Power plants and electricity use

This additional heat contributes directly to UHI.

- 4. Urban Geometry:** Tall buildings and narrow streets create "urban canyons" that trap heat and reduce air circulation. The lack of airflow increases temperature.
- 5. Reduced Water Bodies:** Water bodies like lakes and ponds cool the air through evaporation. Urbanization often leads to the loss of these water bodies, reducing cooling effects.

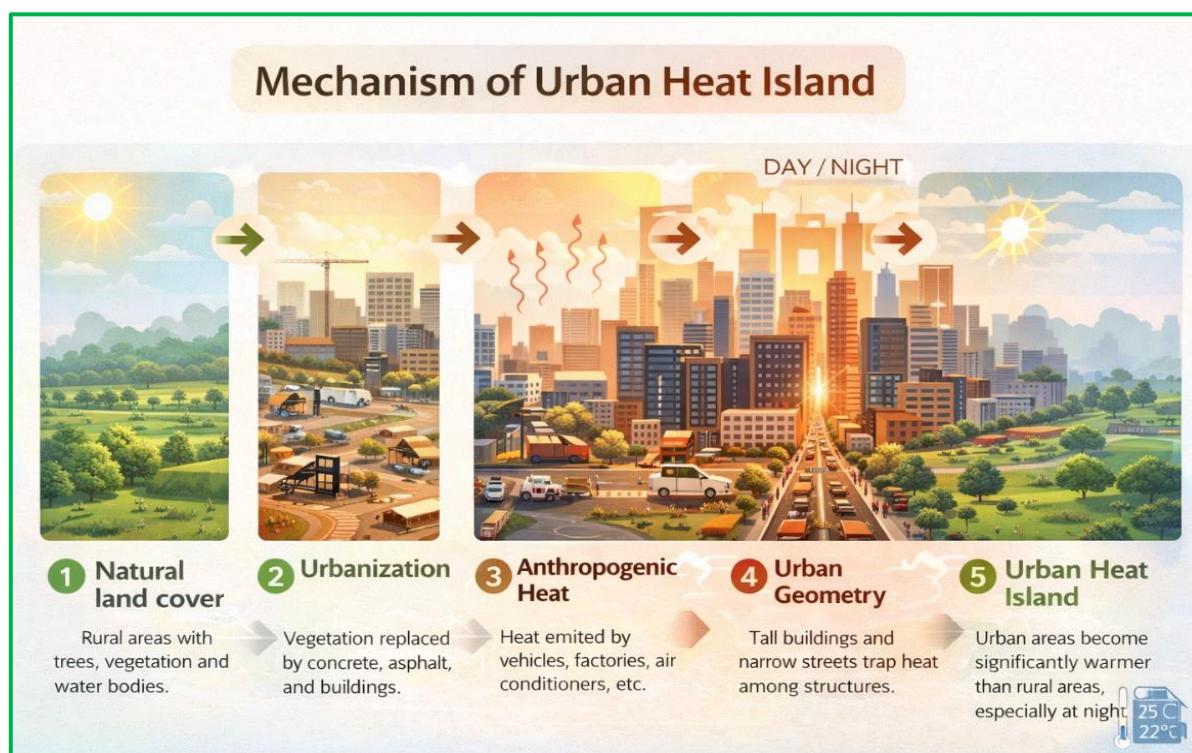
Impact on Environment

- 1. Increased Energy Demand:** Higher temperatures increase the use of air conditioners, leading to more electricity consumption. This increases energy costs and carbon emissions.
- 2. Air Pollution:** UHI contributes to the formation of ground-level ozone and smog. Hot temperatures accelerate chemical reactions that increase pollution, affecting air quality.
- 3. Ecosystem Changes:** Urban ecosystems become less healthy due to heat stress, reduced biodiversity, and changes in species composition.
- 4. Water Stress:** High temperature increases evaporation, reducing water availability in urban water bodies and increasing water scarcity.

Impact on Agriculture

- 1. Increased Temperature and Water Stress:** Urban Heat Island (UHI) leads to higher temperatures in peri-urban areas, where farmlands are located close to cities. This rise in temperature increases evapotranspiration, which means that soil and plants lose water faster. As a result, soil moisture decreases rapidly, and crops need more frequent irrigation to maintain normal growth. In regions where water is already limited, this leads to severe water stress and increases the cost of irrigation. Over time, higher water demand can reduce water availability for farming, affecting crop growth and sustainability.
- 2. Reduced Crop Productivity:** The elevated temperatures due to UHI directly affect crop growth and productivity. Heat stress interferes with important plant processes like photosynthesis and respiration. During sensitive stages such as flowering and grain formation, excessive heat can cause flower drop, poor pollination, and early maturity, which

reduce crop yield and quality. Crops like wheat, rice, vegetables, and fruits are particularly vulnerable to heat stress. Continuous exposure to high temperatures can result in reduced grain size, poor fruit development, and lower overall productivity.


3. Increased Pest and Disease Pressure: Warmer conditions created by UHI are favorable for many pests and disease pathogens. Higher temperatures speed up the life cycle of insects, enabling them to reproduce faster and increase their population within a season. This leads to higher pest pressure and more frequent outbreaks. Similarly, many fungal and bacterial diseases thrive in warm conditions, increasing the risk of infections and crop damage. As a result, farmers may need to use more pesticides and fungicides, increasing production costs and potentially causing environmental harm.

4. Soil Quality Degradation: UHI also affects soil health by increasing temperature and reducing moisture content. Soil microorganisms, which are essential for nutrient cycling and soil fertility, become less active under high heat and dryness. This reduces nutrient availability and affects soil structure, leading to compaction and poor water infiltration. Over time, the soil becomes less fertile and less productive. These changes can negatively affect long-term agricultural sustainability in peri-urban regions.

Impact on Human Health

- Increased heat stress and heat stroke during heat waves
- Higher risk of dehydration and fatigue
- Respiratory and cardiovascular diseases due to poor air quality
- Increased mortality rates during extreme heat events

Mechanism of Urban Heat Island

Case Studies

1. Delhi, India

Delhi shows high UHI intensity due to dense population, heavy traffic, and extensive concrete surfaces. During summer, night temperatures in Delhi can be **5–7°C higher** than nearby rural areas.

2. New York City, USA

New York experiences UHI due to tall buildings and dense urban infrastructure. The city has implemented green roofs and urban parks to reduce temperature.

3. Bangalore, India

Rapid urbanization and loss of lakes have increased surface temperature. UHI is visible in central areas due to lack of green spaces.

Mitigation Strategies

1. Urban Greening

- Planting trees, parks, and urban forests
- Promoting rooftop gardens and vertical green walls
- Creating green corridors for airflow

2. Cool Roofs and Pavements

Using reflective materials to reduce heat absorption. This lowers surface temperature and helps in cooling cities.

3. Sustainable Urban Planning

- Designing open spaces and wider roads
- Proper ventilation and air flow
- Creating green belts and buffer zones

4. Energy Efficiency

Reducing waste heat from buildings and industries by:

- Using energy-efficient appliances
- Promoting renewable energy
- Improving building insulation

5. Water Management

- Restoring lakes and ponds
- Rainwater harvesting
- Using water bodies for cooling and microclimate regulation

Conclusion

Urban Heat Island is a serious environmental challenge that affects cities globally. It increases energy consumption, worsens air quality, affects human health, and impacts agriculture in peri-urban areas. The problem is expected to worsen due to rapid urbanization and climate change. Effective mitigation requires integrated planning, green infrastructure, energy efficiency, and community involvement. By adopting sustainable practices, cities can reduce UHI intensity and create healthier, more livable environments for future generations.