



## Seeding Prosperity: Transformative Power of Biochar Enhancing

### Seed Quality and Seedling Growth

\*Hithashree K B<sup>1</sup>, Sneha N K<sup>2</sup> and Riswana U<sup>3</sup>

<sup>1</sup>M.Sc. Scholar, Department of Seed Science and Technology, College of Agriculture, OUAT, Bhubaneswar, Odisha, India – 751003

<sup>2</sup>M.Sc. Scholar, Department of Soil Science and Agricultural Chemistry, College of Agriculture, OUAT, Bhubaneswar, Odisha, India – 751003

<sup>3</sup>M.Sc. Scholar, Department of Vegetable Science, College of Agriculture, OUAT, Bhubaneswar, Odisha, India – 751003

\*Corresponding Author's email: [hithahreekb2@gmail.com](mailto:hithahreekb2@gmail.com)

Biochar, a carbon-rich material produced from biomass under limited oxygen conditions, is emerging as a powerful tool for improving seed quality and promoting healthy seedling growth. In recent years, biochar has gained attention not only for its role in climate change mitigation but also for its ability to enhance soil health, seed germination, and early plant development. When applied as a soil amendment or used in seed treatments and coatings, biochar creates a favorable microenvironment around seeds, improving moisture availability, nutrient retention, and microbial activity. These improvements result in better germination, stronger seedlings, and increased crop establishment. Here explains the transformative role of biochar in seedling prosperity, explaining how it works, its benefits for farmers and gardeners, and its potential to support sustainable and climate-resilient agriculture. The paper concludes by summarizing key findings and pointing towards future directions. Biochar emerges not only as a promising tool for sustainable agriculture but also as a versatile agent in environmental remediation and carbon sequestration. This review lays the groundwork for a deeper understanding of biochar's potential and sets the stage for further exploration in this dynamic and evolving field.

**Keywords:** Biochar, climate change mitigation, pyrolysis, seed quality and seedling growth

### Introduction

In an era dominated by escalating environmental concerns and an imperative for sustainable solutions, biochar emerges as a transformative substance with the potential to address challenges spanning agriculture, environmental degradation, and climate change. Rooted in ancient practices, the concept of biochar finds its origins in prehistoric societies where the controlled burning of biomass for agricultural purposes inadvertently led to the creation of charcoal-rich soils, known as Terra Preta (Glaser et al., 2001). This historical backdrop sets the stage for understanding the intrinsic link between biochar and enhanced soil fertility. Fast forward to the contemporary landscape, where pressing issues of soil degradation, declining agricultural productivity, and climate change have catalyzed a resurgence of interest in biochar. With its ability to sequester carbon, improve soil structure, and enhance nutrient retention, biochar stands at the forefront of sustainable solutions (Jeffery et al., 2011). The global interest in biochar is not merely a scientific curiosity; it represents a paradigm shift towards integrating traditional wisdom with cutting-edge technology to foster agricultural resilience and environmental sustainability.

Today, modern science has rediscovered biochar and is exploring its potential to improve soil fertility, store carbon, and enhance plant growth. Beyond soil application, biochar is now being used in seed treatments and seed coatings, opening new opportunities to improve seed quality and seedling performance right from the earliest stages of plant life.

## How Biochar Mitigates Climate Change?

The transition from traditional open burning to biochar production represents a fundamental shift in how we manage agricultural waste and its impact on the global climate. In open burning, the carbon stored in plant matter is released almost instantly into the atmosphere as carbon dioxide, alongside harmful pollutants like black carbon and particulate matter (PM2.5), which directly contribute to immediate atmospheric warming.

In contrast, biochar production utilizes the process of pyrolysis—heating organic material in an oxygen-limited environment—to "lock" carbon into a stable, solid form that can persist for hundreds or even thousands of years. When this biochar is incorporated into the soil, it acts as a carbon sink, effectively removing carbon from the short-term biological cycle and sequestering it long-term. Beyond just mitigating climate change, this practice transforms a potential pollutant into a soil amendment that improves microbial activity, moisture retention, and nutrient availability, turning a "waste" product into a valuable tool for regenerative agriculture.

## Biochar Production

The production of biochar encompasses a spectrum of methodologies, each exerting a distinct influence on the properties of this carbon-rich material. This discussion offers an overview of prominent biochar production methods, underscoring the pivotal role of feedstock selection and processing conditions in shaping biochar characteristics.

**Pyrolysis:** Pyrolysis stands as a cornerstone in biochar production, involving the thermal decomposition of organic materials in the absence of oxygen. This process unfolds through three distinct phases: drying, pyrolysis, and cooling. The temperature and duration of each phase significantly impact biochar properties. High-temperature pyrolysis tends to yield biochar with increased carbon content and greater stability. The choice of feedstock, whether agricultural residues, wood, or manure, profoundly influences the physicochemical attributes of the resulting biochar (Lehmann et al., 2015).

**Gasification:** Gasification represents an alternative thermochemical process wherein organic materials are converted into synthesis gas (syngas) under controlled conditions. The syngas can be utilized for energy production, and the solid residue left behind is biochar. Gasification exhibits versatility in feedstock selection, ranging from woody biomass to agricultural residues. The gaseous environment in this process influences biochar properties, with lower oxygen levels typically yielding biochar with enhanced stability (Roberts et al., 2010).

**Hydrothermal Carbonization (HTC):** Hydrothermal carbonization involves the treatment of biomass with heat and water under elevated pressures, mimicking the natural coal formation process on a shorter timescale. Notable for its capacity to process wet biomass, HTC yields biochar with distinctive properties influenced by hydrothermal conditions, such as increased surface area and unique functional groups (Novak et al., 2009).

## Biochar Properties

Biochar's multifaceted properties play a pivotal role in determining its effectiveness in various applications, ranging from agriculture to environmental remediation. This section scrutinizes the physical, chemical, and biological attributes of biochar, elucidating the pivotal roles of surface area, porosity, and functional groups in shaping its behaviour across different environments.

### Physical Properties

**Surface Area:** Biochar's surface area is a critical factor influencing its reactivity and adsorption capacity. Higher surface areas provide more sites for chemical reactions and

nutrient adsorption. The production method, especially pyrolysis at high temperatures, often results in biochar with increased surface area, enhancing its potential for soil improvement and environmental applications (Lehmann et al., 2015).

**Porosity:** The porosity of biochar, characterized by its pore size distribution, affects water retention, aeration, and microbial colonization in soils. Macropores facilitate water movement, while micropores play a role in nutrient retention. The balance between these pore sizes is crucial for biochar's effectiveness in enhancing soil structure (Jeffery et al., 2017).

**Density:** Biochar density influences its nutrient retention capacity and durability in soil. Low-density biochar may break down more rapidly, releasing nutrients, while high-density biochar may persist longer in the soil. Finding an optimal density is essential for achieving the desired agronomic and environmental outcomes (Mohan et al., 2006).

### Chemical Properties

**Carbon Content:** Biochar is primarily composed of carbon, and its carbon content influences its stability and potential for long-term carbon sequestration. High-temperature pyrolysis processes often result in biochar with higher carbon content, making it more resistant to microbial decomposition (Lehmann et al., 2011).

**Functional Groups:** Functional groups on the biochar surface, such as hydroxyl, carboxyl, and phenolic groups, influence its chemical reactivity and interactions with nutrients and contaminants. These groups can enhance biochar's cation exchange capacity, making it a valuable soil conditioner (Novak et al., 2009).

**pH:** Biochar's pH can influence soil acidity or alkalinity. The alkaline nature of some biochar can help neutralize acidic soils. However, the impact of biochar on soil pH is context-dependent and varies with feedstock and production conditions (Jeffery et al., 2017).

### Biological Properties

**Microbial Activity:** Biochar can influence soil microbial communities by providing a habitat for beneficial microorganisms. Its porous structure can serve as a refuge for microbes, fostering a conducive environment for soil health and nutrient cycling (Lehmann et al., 2011).

**Plant Growth Promotion:** Biochar's positive impact on plant growth is linked to its ability to improve nutrient availability, water retention, and microbial activity in the rhizosphere. The presence of biochar can enhance root development and nutrient uptake by plants (A gegnehu et al., 2017).

## Advantages of biochar seed treatment in seed quality and seedling growth

### Enhancing Seed Quality and Germination

Biochar improves the "speed" and "success rate" of germination through several mechanisms:

- **Water Management:** Due to its high porosity and surface area, biochar acts like a sponge, retaining moisture directly around the seed. This ensures a consistent supply of water, which is critical during the initial imbibition phase.
- **Phytotoxin Adsorption:** Biochar can adsorb and neutralize Allelopathic chemicals or heavy metals in the soil that might otherwise inhibit a seed's ability to sprout.
- **Enzymatic Activation:** When used in bioprimer (soaking seeds in a biochar slurry), it can trigger internal enzymatic reactions that prepare the seed for rapid emergence and better adaptability to environmental stress.
- **Temperature Regulation:** Because of its dark colour, biochar can slightly increase soil temperature by absorbing more solar radiation, which can accelerate germination in cooler climates.

### Boosting Seedling Growth

Once the seed has sprouted, biochar supports the "early vigour" of the seedling:

- **Nutrient Delivery:** Biochar contains essential macro and micronutrients (such as K, Ca, and Mg) derived from its original biomass. It also has a high Cation Exchange Capacity (CEC), meaning it holds onto added fertilizers and releases them slowly, preventing nutrient leaching.

- Root System Development: Studies show that biochar significantly increases Total Root Length (TRL) and Root Surface Area. This is often due to the "fine pore" structure of biochar, which encourages fine root proliferation, allowing the plant to explore more soil volume for nutrients.
- Microbial "Refuge": The porous structure of biochar provides a protected habitat for beneficial soil microbes, such as mycorrhizal fungi and nitrogen-fixing bacteria. These microbes form a symbiotic relationship with the seedling's roots, further improving nutrient uptake and disease resistance.
- Physiological Strength: Seedlings grown with biochar often show higher chlorophyll content and increased activity of antioxidant enzymes (like SOD and CAT), which helps the young plant manage oxidative stress.

## Challenges and Future Opportunities

Despite its many benefits, biochar use also faces some challenges:

- Variation in biochar quality depending on feedstock and production method
- Need for proper application rates for different crops and soils
- Limited awareness among farmers and extension workers
- Initial cost of production and processing

Future research and farmer training can help overcome these challenges. With proper guidelines and local production systems, biochar can become a practical and affordable tool for improving seedling prosperity.

## Conclusion

In conclusion, this review has explored the diverse facets of biochar, emphasizing its potential as a sustainable solution for soil improvement, environmental remediation, and carbon sequestration. Key findings include varied biochar production methods, the influence of feedstock and processing conditions on its characteristics, and the pivotal role of advanced characterization techniques. Biochar positively affects soil health by enhancing structure, water retention, and nutrient cycling, with promising applications in environmental remediation. Despite challenges like feedstock availability and economic viability, biochar's future relies on precision production, tailored properties, and understanding crop-specific applications. The review underscores biochar's promise as a versatile tool addressing contemporary challenges, paving the way for resilient ecosystems and sustainable practices. Embracing interdisciplinary collaboration and ethical practices is essential for unlocking the full potential of biochar in agriculture, environmental health, and global climate change mitigation.

## Reference

1. Agegnehu G, Bass AM, Nelson PN, Bird MI. Benefits of biochar, compost and biochar-compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural 2017;579:1345-1353.
2. Glaser B, Haumaier L, Guggenberger G, Zech W. 2001. The 'Terra Preta' phenomenon: A model for sustainable agriculture in the humid tropics. *Naturwissenschaften*, 88(1):37-41.
3. Jeffery S, Abalos D, Prodana M, Bastos AC, van Groenigen JW, Hungate BA, et al. Biochar boosts tropical but not temperate crop yields. *Environ Res Lett*. 2017;12(5):053001.
4. Jeffery S, Verheijen FGA, van der Velde M, Bastos AC. A quantitative review of the effects of biochar application to soils on crop productivity using meta analysis. *Agric Ecosyst Environ*. 2011;144(1):175-187.
5. Lehmann J, da Silva Jr JP, Steiner C, Nehls T, Zech W, Glaser B, et al. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. *Plant Soil*. 2003;249(2):343-357.

6. Lehmann J, Joseph S, editors. Biochar for Environmental Management: Science, Technology and Implementation. Routledge; c2015
7. Mohan D, Pittman Jr CU, Steele PH. Pyrolysis of wood/biomass for bio-oil: a critical review. *Energy Fuels*. 2006;20(3):848-889.
8. Novak JM, Lima I, Xing B, Gaskin JW, Steiner C, Das KC, et al. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. *Ann Environ Sci*. 2009;3:195-206.
9. Roberts KG, Gloy BA, Joseph S, Scott NR. Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential. *Environ Sci Technol*. 2010;44(2):827-833.