

Novel and Advanced Research Frontiers in Horticulture: Technologies, Biological Innovations and Sustainable Production Systems

Jadhav Amol¹, *Nikhil Thakur² and V. Narendhiran³

¹PhD Scholar, Department of Floriculture and landscaping, Dr. Panjabrao Deshmukh
Krishi Vidyapeeth, Akola

²PhD Scholar, Department of Horticulture, School of Agricultural Sciences, Nagaland
University, Medziphema Campus

³Assistant Professor, Department of Horticulture, School of Agricultural Sciences,
Dhanalakshmi Srinivasan University, Samayapuram, Trichy – 621112

Corresponding Author's email: nikhil61thakur@gmail.com

Horticulture is undergoing a rapid transformation driven by advances in biotechnology, digital agriculture, controlled environment systems and sustainability-oriented production strategies. Increasing global demand for high-quality fruits, vegetables and ornamental crops, coupled with challenges such as climate change, resource scarcity, labour shortages and postharvest losses, has accelerated the adoption of innovative technologies. This review synthesizes recent developments in advanced horticulture, focusing on controlled environment agriculture and vertical farming, artificial intelligence and sensor-based phenotyping, robotics and automation, plant microbiome engineering, genome editing for designer traits, regenerative substrate management including biochar-based systems and nanotechnology in postharvest management. Emphasis is placed on mechanistic understanding, practical applications, current limitations and future research directions. The review highlights the importance of integrative and interdisciplinary approaches to achieve sustainable, resilient and high-value horticultural production systems.

Keywords: advanced horticulture, vertical farming, artificial intelligence, microbiome engineering, CRISPR, biochar, nanotechnology, postharvest technology

Introduction

Horticulture plays a vital role in global food and nutritional security, economic development, and aesthetic enrichment of human environments. Fruits, vegetables, flowers, and ornamental plants contribute essential vitamins, minerals, antioxidants and bioactive compounds to human diets while also supporting livelihoods through high-value markets. However, horticultural production systems face increasing pressures from climate variability, shrinking arable land, declining soil health, water scarcity, rising input costs and labour shortages (FAO, 2022).

Traditional approaches to intensification are no longer sufficient to meet these challenges sustainably. Consequently, horticulture has become a major beneficiary of technological convergence, where advances in plant biology, engineering, data science and materials science intersect. Modern horticulture increasingly integrates controlled environment agriculture (CEA), digital and precision tools, biological inputs and postharvest innovations to enhance productivity while minimizing environmental impact.

Recent research has shifted focus from yield maximization alone to resource-use efficiency, resilience, quality enhancement and sustainability. Novel and advanced topics

such as artificial intelligence-based crop monitoring, genome editing for trait improvement, microbiome-assisted nutrient management, regenerative soilless systems and nanotechnology-based postharvest solutions are redefining horticultural science. This review provides a comprehensive synthesis of these emerging research frontiers, highlighting scientific progress, practical relevance and future research needs.

Controlled Environment Agriculture and Vertical Farming

Controlled Environment Agriculture (CEA) refers to crop production systems where environmental factors such as temperature, light, humidity, carbon dioxide concentration and nutrient supply are precisely regulated to optimize plant growth. Vertical farming, a subset of CEA, uses stacked layers in indoor environments to maximize space-use efficiency, often employing LED lighting and hydroponic or aeroponic systems (Despommier, 2013).

Recent advances in LED technology have enabled spectral tuning to manipulate plant morphology, photosynthesis, flowering and secondary metabolite production. Studies have demonstrated that red-blue light combinations enhance biomass accumulation, while supplemental far-red or UV light can influence flowering time and phytochemical synthesis (Dsouza *et al.*, 2023). Vertical farms have been particularly successful for leafy greens, herbs, and microgreens and research is expanding toward fruiting vegetables and ornamentals.

Despite agronomic advantages such as reduced pesticide use, year-round production, and proximity to urban markets, CEA systems face challenges related to high energy demand, capital costs and economic viability. Life-cycle assessments reveal that sustainability depends heavily on renewable energy integration and efficient climate control (Graamans *et al.*, 2018). Current research emphasizes optimizing energy-use efficiency, integrating solar and waste-heat recovery systems and developing crop-specific growth protocols.

Fig.1 - Plants cultivated under controlled environmental conditions using vertical farming systems. (<https://etia-group.com/biochar/>)

Artificial Intelligence, Sensors and Digital Horticulture

Artificial intelligence (AI) and sensor technologies are revolutionizing horticulture by enabling real-time monitoring, predictive decision-making, and automation. Advances in imaging technologies (RGB, multispectral, hyperspectral, thermal) combined with machine

learning algorithms allow early detection of nutrient deficiencies, water stress, pest infestation, and diseases (Su *et al.*, 2023).

Deep learning models have been successfully applied for:

- Automated disease diagnosis using leaf images
- Yield and quality prediction
- Flower counting and phenological stage detection
- Canopy temperature-based irrigation scheduling

High-throughput phenotyping platforms integrate sensors with data analytics to quantify complex traits such as growth rate, stress tolerance, and flowering behaviour. Recent trends include edge computing, where AI models run directly on farm devices or smartphones, enabling low-latency decisions without continuous internet connectivity (Wang *et al.*, 2025).

However, challenges remain in dataset standardization, model generalization across environments and cultivars and adoption by smallholder farmers. Explainable AI and participatory model development are emerging as important research directions to improve trust and usability.

Robotics and Automation in Horticulture

Labor-intensive operations such as harvesting, pruning, weeding, grading and packing are major cost components in horticulture. Robotics and automation offer solutions to labour shortages and inconsistent labour availability. Recent developments in agricultural robotics include autonomous harvesters for fruits, robotic arms for greenhouse operations and mobile platforms equipped with sensors for crop scouting (Anastasiou *et al.*, 2025).

Soft robotics and improved end-effector designs have enhanced the ability of robots to handle delicate horticultural produce such as tomatoes, strawberries and cut flowers without mechanical damage. Integration of computer vision enables robots to identify maturity stages and selectively harvest market-ready produce.

Despite technological progress, adoption remains limited by high initial investment, variability in field conditions and the biological complexity of horticultural crops. Current research focuses on modular, low-cost robotic systems, collaborative human-robot workflows and service-based business models to increase accessibility.

Fig. 2 - Use of robotic technologies for automation and precision operations in horticulture. (<https://www.sick.com/ae/en/sick-sensor-blog/super-trooper-un-robot-autonomo-aiuta-i-giardinieri-a-trasportare-piante-in-vaso/w/blog-instar-robotics-success-story>)

Plant Microbiome Engineering and Biological Inputs

The plant microbiome - including rhizosphere, phyllosphere and endophytic microorganisms - plays a crucial role in nutrient acquisition, stress tolerance and disease resistance. Advances in next-generation sequencing and bioinformatics have enabled detailed characterization of plant-associated microbial communities, leading to the concept of microbiome engineering (Afzeli *et al.*, 2022).

Synthetic microbial consortia (SynComs) designed to perform specific functions, such as nitrogen fixation, phosphorus solubilization or pathogen suppression, are being developed for horticultural crops. Endophytic bacteria such as *Bacillus*, *Pseudomonas* and *Azospirillum* have shown promise in enhancing growth and yield in vegetables and ornamentals (Ali *et al.*, 2024).

One major challenge is ensuring consistent establishment and performance of introduced microbes across diverse environments. Strategies such as biochar-based carriers, seed or bulb coatings and compatibility screening with host genotypes are being explored. Regulatory frameworks and biosafety assessments are also critical for large-scale deployment.

Genome Editing and Designer Horticultural Crops

Genome editing technologies, particularly CRISPR/Cas systems, have transformed plant breeding by enabling precise, targeted genetic modifications. In horticulture, genome editing is being applied to develop designer crops with novel flower colours, improved fragrance, extended shelf life, enhanced nutritional profiles and stress tolerance (Khan *et al.*, 2022).

Ornamental crops are especially attractive targets because consumer acceptance is generally higher and regulatory pathways may be less restrictive compared to food crops. Recent studies demonstrate successful editing of genes involved in pigment biosynthesis, ethylene signalling and flowering regulation, resulting in improved vase life and novel aesthetic traits.

Emerging tools such as base editing and prime editing further expand the range of possible modifications. However, challenges include off-target effects, pleiotropic responses, genotype-specific editing efficiency and regulatory uncertainty across countries. Integration of metabolomics and transcriptomics is increasingly used to validate trait outcomes and unintended effects.

Regenerative Substrate Management and Biochar-Based Systems

Soilless horticulture relies heavily on inert substrates that lack biological activity, leading to high fertilizer dependency. Regenerative approaches aim to restore biological functionality to these systems. Biochar, produced from agricultural residues, has emerged as a promising amendment for both soil and soilless systems (Zulfiqar *et al.*, 2022).

Biochar improves substrate water retention, aeration, nutrient buffering and microbial habitat availability. Studies show that biochar can reduce nutrient leaching and enhance fertilizer-use efficiency when incorporated into horticultural substrates (Dispenza *et al.*, 2016). When combined with beneficial microbes, biochar acts as a carrier that enhances microbial persistence and activity.

Research on biochar in floriculture and protected horticulture is still limited but growing. Key challenges include variability in biochar quality, optimization of amendment rates and understanding long-term effects. Standardization of biochar characterization and integration with microbial inoculants represent important future directions.

Nanotechnology in Postharvest Management

Postharvest losses in horticultural crops remain a major concern, particularly for perishable fruits, vegetables and flowers. Nanotechnology offers innovative solutions for extending shelf life, reducing microbial spoilage and improving packaging performance. Nanomaterials such as chitosan nanoparticles, silver nanoparticles and nanocellulose-based films have shown antimicrobial and barrier properties (Upadhyay *et al.*, 2022).

Nano-enabled coatings can regulate gas exchange, delay senescence and deliver antimicrobial agents in a controlled manner. Smart packaging systems incorporating nano sensors can monitor temperature, humidity and spoilage indicators during storage and transport.

Despite promising results, concerns regarding nanoparticle toxicity, environmental fate, and regulatory approval remain. Research increasingly emphasizes green synthesis, biodegradable nanomaterials and comprehensive safety assessments.

Integration of Advanced Technologies in Horticulture

The greatest potential lies in integrating multiple innovations rather than adopting them in isolation. Examples include:

- AI-driven control systems in vertical farms
- Microbiome-enhanced substrates combined with precision fertigation
- Genome-edited crops monitored using digital phenotyping
- Nano-enabled packaging integrated with cold-chain logistics

Such integrative approaches require interdisciplinary collaboration and systems-level thinking. Pilot studies and long-term evaluations are essential to assess economic feasibility and environmental impact.

Challenges, Ethical Considerations and Future Research Needs

While advanced technologies offer significant promise, several challenges must be addressed. These include high capital costs, unequal access for smallholders, data privacy issues in digital agriculture, regulatory uncertainty for genome-edited and microbial products and safety concerns for nanomaterials.

Future research should focus on:

- Cost-effective and scalable technologies
- Multi-location validation studies
- Socio-economic impact assessment
- Policy and regulatory harmonization
- Capacity building and farmer-centric innovation

Conclusions

Advanced horticulture is rapidly evolving through the integration of digital tools, biological innovations, and sustainable production strategies. Technologies such as CEA, AI, robotics, microbiome engineering, genome editing, regenerative substrates and nanotechnology collectively offer pathways to enhance productivity, quality and resilience. Continued interdisciplinary research, responsible innovation and inclusive deployment will be critical to realizing the full potential of these advances for sustainable horticultural development.

References

1. Afridi, M. S., Javed, M. A., Ali, S., De Medeiros, F. H. V., Ali, B., Salam, A. and Santoyo, G. (2022). New opportunities in plant microbiome engineering for increasing agricultural sustainability under stressful conditions. *Frontiers in Plant Science*, 13, 899464.
2. Ali, M. A., Ahmed, T., Ibrahim, E., Rizwan, M., Chong, K. P. and Yong, J. W. H. (2024). A review on mechanisms and prospects of endophytic bacteria in biocontrol of plant pathogenic fungi and their plant growth-promoting activities. *Heliyon*, 10(11).
3. Despommier, D. (2013). Farming up the city: the rise of urban vertical farms. *Trends in biotechnology*, 31(7), 388-389.
4. Dispenza, V., De Pasquale, C., Fascella, G., Mammano, M. M. and Alonzo, G. (2016). Use of biochar as peat substitute for growing substrates of *Euphorbia lomi* potted plants. *Spanish Journal of Agricultural Research*, 14(4), e0908-e0908.
5. Dsouza, A., Newman, L., Graham, T. and Fraser, E. D. (2023). Exploring the landscape of controlled environment agriculture research: A systematic scoping review of trends and topics. *Agricultural Systems*, 209, 103673.

6. Graamans, L., Baeza, E., Van Den Dobbelen, A., Tsafaras, I. and Stanghellini, C. (2018). Plant factories versus greenhouses: Comparison of resource use efficiency. *Agricultural systems*, 160, 31-43.
7. Khan, Z., Razzaq, A., Sattar, T., Ahmed, A., Habibullah Khan, S. and Zubair Ghouri, M. (2022). Understanding floral biology for CRISPR-based modification of color and fragrance in horticultural plants. *F1000Research*, 11, 854.
8. Su, D., Qiao, Y., Jiang, Y., Valente, J., Zhang, Z. and He, D. (2023). AI, sensors and robotics in plant phenotyping and precision agriculture, volume II. *Frontiers in Plant Science*, 14, 1215899.
9. Upadhyay, T. K., Kumar, V. V., Sharangi, A. B., Upadhye, V. J., Khan, F., Pandey, P. and Hakeem, K. R. (2022). Nanotechnology-based advancements in postharvest management of horticultural crops. *Phyton*, 91(3), 471.
10. Zulfiqar, F., Moosa, A., Nazir, M. M., Ferrante, A., Ashraf, M., Nafees, M. and Siddique, K. H. (2022). Biochar: An emerging recipe for designing sustainable horticulture under climate change scenarios. *Frontiers in Plant Science*, 13, 1018646.