



## Role of Chemical Ecology in Pest Management

\*Sambit Patnaik

**M.Sc. Scholar, Department of Entomology, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha- 751003, India**

\*Corresponding Author's email: [sambitpatnaik13@gmail.com](mailto:sambitpatnaik13@gmail.com)

Modern agriculture faces serious limitations due to excessive reliance on synthetic insecticides, including resistance development, pest resurgence, environmental contamination, and non-target effects on beneficial organisms. These challenges have necessitated alternative, ecologically sound pest management strategies. Chemical ecology provides a mechanistic understanding of how insects, plants, and natural enemies interact through chemical signals, enabling pest control strategies that manipulate insect behaviour rather than causing direct mortality.

(Raguso *et al.*, 2015; Saha & Chandran, 2017)

### Definition and Scope of Chemical Ecology

Chemical ecology is defined as the study of chemically mediated interactions among organisms that influence behaviour, physiology, population dynamics and evolutionary processes across different trophic levels. In insect-plant systems, chemical ecology examines how insects locate hosts, mates, and oviposition sites, and how plants defend themselves using constitutive and induced chemical compounds.

(Raguso *et al.*, 2015; Nishida, 2014)

### Chemical Communication in Insects

Insects rely heavily on chemical cues due to their high sensitivity to volatile and contact chemicals, which allows efficient communication even at extremely low concentrations. Chemical signals regulate essential behaviours such as mate attraction, aggregation, alarm responses, host recognition and avoidance of unsuitable resources.

(Pickett *et al.*, 2012; Raguso *et al.*, 2015)

### Semiochemicals: Concept and Classification

Semiochemicals are chemical substances that convey information between organisms and elicit specific behavioural or physiological responses in the receiving organism. Based on the interacting organisms, semiochemicals are broadly classified into pheromones, which act within the same species, and allelochemicals, which act between different species. These compounds are biologically active at very low concentrations and often operate as complex blends rather than single molecules, ensuring high specificity. Semiochemicals form the biochemical basis of most chemical ecology-based pest management tools currently used in agriculture.

(Nordlund *et al.*, 1981; Saha & Chandran, 2017)

### Pheromones: Definition and Ecological Role

Pheromones are intraspecific semiochemicals that mediate communication between individuals of the same species and elicit specific behavioural or physiological responses. These chemicals regulate essential life-history processes such as mating, aggregation, alarm signalling, trail following, and oviposition behaviour, thereby influencing population

dynamics. Pheromonal communication is highly species-specific and operates at extremely low concentrations, making it an efficient and selective ecological signalling system. In pest management, pheromones are exploited to interfere with key behavioural processes without causing direct mortality to insects.

(Nordlund *et al.*, 1981; Pickett *et al.*, 2012)

### Types of Pheromones in Insects

- **Sex pheromones** facilitate mate location and recognition, typically being released by females to attract conspecific males over long distances under natural field conditions.
- **Aggregation pheromones** attract individuals of both sexes and multiple life stages, often leading to the formation of dense populations that can be exploited for mass trapping.
- **Alarm pheromones** are released in response to predation or disturbance and trigger rapid dispersal or defensive behaviour among nearby conspecifics.
- **Trail pheromones** guide social insects such as ants and termites to food sources and nesting sites, demonstrating the role of chemical signals in social organization.

(Blum, 1985; Saha & Chandran, 2017)

### Role of Sex Pheromones in Pest Management

- Sex pheromones are the most widely commercialized semiochemicals and form the backbone of behaviour-based pest management strategies worldwide.
- Their primary use lies in pest detection and monitoring, allowing early warning of pest emergence and accurate timing of control interventions.
- Because sex pheromones attract only the target species, they do not disrupt natural enemies or non-target arthropods in agroecosystems.
- Sex pheromone-based tools are particularly effective against lepidopteran pests, where mating behaviour is strongly pheromone-dependent.

(Witzgall *et al.*, 2010; Saha & Chandran, 2017)

### Allelochemicals: Concept and Classification

Allelochemicals are semiochemicals that mediate interspecific interactions, influencing the behaviour or fitness of organisms belonging to different species. These chemicals play a central role in plant-insect, host-parasitoids, predator-prey, and plant-plant interactions within ecological communities. Based on the beneficiary of the interaction, allelochemicals are classified as **kairomones**, **allomones** or **synomones**. Allelochemicals form the chemical basis of many indirect pest management strategies that enhance natural biological control.

(Nordlund *et al.*, 1981; Nishida, 2014)

### Kairomones and Their Ecological Significance

Kairomones are allelochemicals that benefit the receiving organism while being neutral or detrimental to the emitting organism. Herbivorous insects use plant-derived kairomones to locate suitable host plants for feeding and oviposition. Natural enemies exploit kairomones derived from hosts or host-damaged plants to efficiently locate prey or hosts. In pest management, kairomones are used to enhance parasitoids efficiency and improve the success of biological control programs.

(Lewis *et al.*, 1975; Vet & Dicke, 1992)

**Example:** Volatiles released from caterpillar-damaged maize plants act as kairomones for parasitoids, significantly increasing host location efficiency in *Trichogramma* spp. (Lewis *et al.*, 1975).

### Allomones in Insect-Plant Interactions

Allomones are allelochemicals that benefit the emitting organism by deterring predators, parasites or herbivores. Many insects release defensive allomones as part of their chemical arsenal, reducing predation pressure through repellence or toxicity. Plants produce a wide range of secondary metabolites that function as allomones by discouraging herbivory and

reducing insect performance. Allomonal plant compounds contribute significantly to host plant resistance and can be exploited in pest-resistant crop varieties.

**Example:** Nicotine produced by tobacco plants functions as an allomone by deterring generalist herbivores, thereby reducing feeding damage and larval survival (Nishida, 2014).

### Synomones and Tri-trophic Interactions

Synomones are allelochemicals that benefit both the emitting and receiving organisms, commonly occurring in plant-natural enemy interactions. Herbivore-induced plant volatiles act as synomones by attracting parasitoids and predators that suppress herbivore populations. These chemicals form the basis of tri-trophic interactions involving **plants, herbivores, and natural enemies**. Synomonal signalling enhances indirect plant defence and strengthens conservation biological control in agroecosystems. (Turlings *et al.*, 1995; Dicke & Baldwin, 2010).

**Example:** Maize plants attacked by stemborer larvae emit HIPVs that attract parasitoids such as *Cotesia* spp., resulting in enhanced parasitism and indirect plant defence (Turlings *et al.*, 1995).

### Plant Secondary Metabolites: An Overview

- Plant secondary metabolites are organic compounds not directly involved in growth or reproduction but play a crucial role in plant defence and communication.
- Major classes include alkaloids, terpenoids, phenolics, and glucosinolates, each with distinct ecological functions.
- These compounds influence insect feeding behaviour, survival, development and host selection.
- Many insect pests have evolved mechanisms to detoxify or sequester plant secondary metabolites, reflecting co-evolutionary dynamics.

(Nishida, 2014; Dyer *et al.*, 2018)

### Induced Plant Defences: Concept

Induced plant defences refer to biochemical and physiological changes activated only after herbivore attack, allowing plants to allocate defensive resources efficiently rather than maintaining constant high-level defences. These defences are triggered by insect feeding, oviposition or saliva-derived elicitors that initiate intracellular signalling cascades leading to altered gene expression (Karban & Baldwin, 1997).

### Herbivore-Induced Plant Volatiles (HIPVs)

Herbivore-induced plant volatiles are blends of organic compounds released specifically after herbivore damage, differing qualitatively and quantitatively from volatiles emitted by undamaged plants. HIPVs include terpenoids, green leaf volatiles, aromatic compounds, and nitrogen- or sulfur-containing compounds that function primarily in indirect plant defence (Turlings *et al.*, 1995). These volatiles provide reliable information about herbivore presence, identity and feeding intensity to natural enemies (Dicke & Baldwin, 2010). HIPVs represent a key chemical interface linking plant defence strategies with biological control processes.

(Turlings *et al.*, 1995; Dicke & Baldwin, 2010)

### Role of HIPVs in Tri-trophic Interactions

HIPVs act as synomones by attracting parasitoids and predators that suppress herbivore populations, thereby benefiting both the plant and the natural enemy (Vet & Dicke, 1992). Natural enemies use HIPVs to locate hosts more efficiently than random searching, increasing parasitism and predation rates under field conditions (Turlings & Wäckers, 2004). The specificity of HIPV blends allows discrimination between damaged and undamaged plants, as well as between different herbivore species. Manipulation of HIPV emission is increasingly viewed as a promising strategy for strengthening conservation biological control in cropping systems.

(Vet & Dicke, 1992; Turlings & Wäckers, 2004)

## Kairomones in Host Location by Natural Enemies

Kairomones derived from host insects or host-damaged plants play a crucial role in guiding parasitoids toward suitable hosts. Parasitoids such as *Trichogramma* spp. respond strongly to plant volatiles induced by herbivore feeding rather than to host odours alone (Lewis *et al.*, 1975). These kairomonal cues improve host-searching efficiency and increase parasitism rates under both laboratory and field conditions (Vet & Dicke, 1992).

## Chemical Ecology of Host Plant Resistance

Host plant resistance is strongly influenced by chemical traits that affect insect feeding, survival and reproduction. Secondary metabolites such as alkaloids, phenolics, and terpenoids function as feeding deterrents or toxins, reducing pest performance (Nishida, 2014). In some cases, specialist insects adapt to these compounds and use them as host recognition cues, illustrating co-evolutionary dynamics. Understanding the chemical basis of resistance aids in breeding crop varieties with durable pest resistance. (Nishida, 2014; Dyer *et al.*, 2018)

## Chemical Ecology and Biological Control Integration

Chemical ecology strengthens biological control by improving synchronization between pests and their natural enemies through chemical cues. Semiochemicals can be used to retain natural enemies in crop fields, increasing their impact on pest populations (Pickett *et al.*, 2012). Combining semiochemical-based approaches with classical biological control enhances stability and effectiveness of pest suppression. Such integration reduces reliance on insecticides and supports long-term agroecosystem sustainability. (Pickett *et al.*, 2012; Raguso *et al.*, 2015)

## Chemical Ecology in Integrated Pest Management (IPM)

Integrated Pest Management emphasizes the use of ecologically compatible control tactics, and chemical ecology provides behavioural tools that fit naturally within this framework. Semiochemical-based methods complement cultural, biological, and mechanical control strategies without disrupting agroecosystem balance (Kogan, 1998). Chemical ecology-based interventions allow precise targeting of pest behaviour, improving decision-making and reducing unnecessary pesticide applications (Witzgall *et al.*, 2010).

## Mass Trapping as a Pest Suppression Strategy

- Mass trapping aims to suppress pest populations by capturing a substantial proportion of adults before mating and oviposition occur.
- This approach relies on highly attractive pheromone or kairomone lures that outcompete natural sources of attraction (El-Sayed *et al.*, 2009).
- Successful mass trapping requires high trap density, sustained lure activity, and economic feasibility relative to other control methods.
- Mass trapping has been effectively applied against pests such as fruit flies and banana weevils under field conditions (Alpizar *et al.*, 2012).

(El-Sayed *et al.*, 2009; Alpizar *et al.*, 2012)

## Mating Disruption: Principle and Mechanism

- Mating disruption involves the release of large quantities of synthetic sex pheromones into the crop environment to interfere with mate-finding behaviour.
- Excess pheromone confuses males by masking natural pheromone plumes or creating false trails, reducing successful mating (Cardé & Minks, 1995).
- Reduced mating success leads to lower egg deposition and gradual decline in pest population density over successive generations.
- Mating disruption is most effective against pests with pheromone-mediated mate location and low female mobility. (Cardé & Minks, 1995; Witzgall *et al.*, 2010)

## Push–Pull Strategy: Chemical Ecology Basis

The push–pull strategy exploits insect behavioural responses to semiochemicals by combining repellent stimuli (push) with attractive stimuli (pull). Repellent intercrops or volatiles drive pests away from the main crop, while trap crops or attractant-baited traps concentrate pests in manageable areas (Khan *et al.*, 2010). This strategy is grounded in chemical ecology principles involving host selection and orientation behaviour. Push–pull systems are particularly effective in cereal-based cropping systems and smallholder agriculture.

(Khan *et al.*, 2010; Pickett *et al.*, 2012)

## Chemical Ecology and Insect Resistance Management

Behaviour-based pest control methods exert lower selection pressure for resistance compared to conventional insecticides (Reddy & Guerrero, 2004). Since semiochemicals do not directly kill insects, physiological resistance mechanisms are less likely to evolve rapidly. Chemical ecology-based tools can be rotated or combined with other control tactics to further delay resistance development. Incorporating behavioural manipulation enhances long-term effectiveness of pest management programs. (Reddy & Guerrero, 2004; Pickett *et al.*, 2012)

## Advantages of Chemical Ecology-Based Approaches

- Chemical ecology-based pest management strategies are highly species-specific, minimizing adverse effects on non-target organisms.
- These approaches are environmentally safe, require low quantities of active compounds, and leave no toxic residues in food or soil.
- Compatibility with biological control and organic farming systems enhances their adoption potential.
- Overall, chemical ecology offers sustainable, ecologically sound alternatives to conventional pest control practices.

(Pickett *et al.*, 2012; Raguso *et al.*, 2015)

## Limitations of Chemical Ecology-Based Pest Management

- Despite high specificity, many chemical ecology-based tools are effective only against a narrow range of target species, limiting their standalone applicability in complex pest assemblages.
- The success of semiochemical-based strategies is strongly influenced by environmental factors such as temperature, wind patterns, and crop architecture, which affect signal dispersion (Witzgall *et al.*, 2010).
- Effective implementation requires detailed knowledge of pest biology and ecology, which may not always be readily available.

(Witzgall *et al.*, 2010; Pickett *et al.*, 2012)

## Future Prospects of Chemical Ecology in Pest Management

- Future pest management strategies are expected to increasingly rely on behaviour-based approaches that exploit chemical communication systems.
- Development of smart crops capable of early volatile-mediated defence activation represents a promising direction (Bruce *et al.*, 2010).
- Integration of chemical ecology with precision agriculture and digital monitoring tools will enhance decision-making accuracy.
- Continued interdisciplinary research is essential for addressing emerging pest challenges sustainably.

## Chemical Ecology and Climate-Resilient Pest Management

- Climate-induced changes in plant physiology may alter volatile emission profiles, potentially reducing reliability of established semiochemical cues (Gershenson *et al.*, 2012).

- Pest phenology and behaviour may shift under warming conditions, necessitating adaptive semiochemical formulations and deployment strategies.
- Climate-resilient push–pull systems demonstrate how chemical ecology can be adapted to changing environmental conditions (Khan *et al.*, 2016).
- Future pest management strategies must integrate climate-smart chemical ecology approaches.

(Gershenson *et al.*, 2012; Khan *et al.*, 2016)

## Conclusion

- Chemical ecology explains pest behavior through chemically mediated interactions among plants, insects, and natural enemies.
- Behaviour-based strategies such as pheromone-based monitoring, mating disruption, push–pull systems, and induced plant defenses provide effective alternatives to conventional insecticides.
- Exploitation of semiochemicals enables species-specific, environmentally safe, and sustainable pest management.
- Integration of chemical ecology with IPM enhances biological control, reduces insecticide dependence, and supports resistance management.

## References

1. Bruce TJA. (2003). Induced resistance affects aphid and parasitoid responses, *Proceedings of the National Academy of Sciences*, 100: 15430–15435.
2. Cardé, RT and Minks AK. (1995). Control of moth pests by mating disruption, *Annual Review of Entomology*, 40: 559–585
3. Dicke M and Baldwin IT. (2010). The evolutionary context for herbivore-induced plant volatiles, *Annual Review of Ecology, Evolution and Systematics*, 41: 245–272.
4. Heil M and Karban R. (2009). Explaining evolution of plant communication by airborne signals, *Trends in Ecology & Evolution*, 25: 137–144.
5. Howe GA and Jander G. (2008). Plant immunity to insect herbivores, *Annual Review of Plant Biology*, 59: 41–66.
6. Ioriatti C (2011). Mating disruption of *Lobesia botrana*: theory, practice and perspectives, *Journal of Economic Entomology*, 104: 329–335
7. Khan ZR. (2010). Exploiting chemical ecology for pest management, *Journal of Chemical Ecology*, 36: 1–15.
8. Kogan M. (1998). Integrated pest management: historical perspectives and contemporary developments, *Annual Review of Entomology*, 43: 243–270.
9. Nishida R. (2014). Chemical ecology of insect–plant interactions, *Journal of Chemical Ecology*, 40: 225–239.
10. Nordlun DA, Lewis, WJ and Altieri MA. (1981). Semiochemicals: a review of the terminology, *Journal of Chemical Ecology*, 7: 129–146.
11. Pickett JA. (2012). Aspects of insect chemical ecology: exploitation of reception and detection, *Physiological Entomology*, 37: 1–13.
12. Raguso, RA. (2015). The raison d'être of chemical ecology. *Ecology*, 96: 617–630.
13. Sobhy IS. (2022). Volatile-mediated interactions in push–pull systems. *Frontiers in Ecology and Evolution*
14. Thaler JS, Humphrey PT and Whiteman NK. (2012). Evolution of jasmonate and salicylate signaling, *Journal of Chemical Ecology*, 38: 46–58.
15. Turlings TCJ. (1995). Herbivore-induced plant volatiles. *Science*, 250: 1251–1253.
16. Vet LEM and Dicke M. (1992). Ecology of infochemical use by natural enemies, *Annual Review of Entomology*, 37: 141–172.
17. Witzgall P, Kirsch P and Cork A. (2010). Sex pheromones and their impact on pest management, *Annual Review of Entomology*, 55: 349–366.