

Three Pillars of Crop Productivity: Plant Breeding, Agronomy and Seed Science

*Vijay, Jaibheem and Vinaykumar B Biradar

College of Agriculture, GVK, UAS, Bangalore, Karnataka, India

*Corresponding Author's email: jadhavijayuasb@gmail.com

Agriculture plays a crucial role in ensuring food and nutritional security for a rapidly growing population. However, crop productivity today faces several challenges such as climate change, declining soil fertility, pest and disease outbreaks (FAO, 2017). To overcome these challenges, agriculture must rely on scientific approaches that improve both crop performance and farming efficiency. Among the many branches of agricultural science, Plant Breeding, Agronomy and Seed Science together form the foundation for successful crop production. Crop productivity is not determined by a single factor but by the combined influence of improved crop varieties, proper field management and availability of quality seed. Plant breeding provides genetically superior varieties with higher yield potential and resistance to biotic and abiotic stresses (Acquaah, 2012). Agronomy ensures that these varieties are grown under optimum conditions through suitable cultivation practices such as proper spacing, nutrient management and irrigation. Seed science guarantees that farmers receive healthy, pure and vigorous seed capable of producing uniform and productive crops. The integration of these three disciplines acts as a powerful tool for sustainable agricultural development. When improved varieties are supported by scientific agronomic practices and high-quality seed, farmers can achieve better yield, improved income and reduced production risks. Therefore, understanding the role of plant breeding, agronomy and seed science as the three pillars of crop productivity is essential for strengthening modern agriculture and achieving long-term food security.

Plant Breeding: developing better crop varieties

Plant breeding is the science of improving crop plants through selection and hybridization to develop varieties and hybrids. These cultivars offer higher yield, better quality and greater resistance to stresses. Over the past years, plant breeders have played a key role in increasing agricultural production by introducing improved varieties and hybrids suited to different agro-climatic conditions. These improved crop varieties form the genetic foundation of crop productivity and determine how efficiently a plant can use water, nutrients, sunlight and other natural resources to produce food.

Modern plant breeding focuses not only on yield improvement but also on developing cultivars resistant to diseases, pests and abiotic stresses like drought, salinity and heat. Advances in breeding techniques, including hybrid breeding, mutation breeding, speed breeding and molecular approaches accelerated the development of superior cultivars. Nutritional quality has also become an important breeding objective, leading to the development of biofortified crops rich in essential vitamins and minerals. Without improved varieties, the impact of good agronomic practices and quality seed remains limited. Plant breeding provides the basic raw material for agriculture by continuously creating crop types that are more productive, resilient and adaptable to changing climatic conditions. Thus, plant breeding serves as the first and most important pillar in enhancing crop productivity and ensuring food security for future generations.

The recent advances in plant breeding are ensuring the agricultural sustainability. For example, Genome-edited rice varieties such as DRR Dhan-100 (Kamala) and Pusa DST Rice 1 represent a major milestone in Indian agriculture, being among the first genome-edited crops released in the country. These varieties were developed using advanced CRISPR-Cas9 techniques to enhance yield, drought and salinity tolerance, and resource efficiency, while reducing water use compared with their parent lines. ICPV 25444, a pigeon pea variety developed by ICRISAT, is an all-season, heat-tolerant cultivar designed to address the challenges of pulse production under extreme summer temperatures. This variety exhibits superior tolerance to high temperatures during flowering and pod formation, which are critical stages that typically limit yield in pigeon pea.

Agronomy: managing crops in the field.

Agronomy is the branch of agricultural science that deals with the scientific management of crops and soils to achieve maximum and sustainable production. While plant breeding provides improved varieties, agronomy ensures that these varieties are grown under optimal field conditions. It focuses on practices such as land preparation, sowing time, spacing, nutrient management, irrigation and weed control. Efficient agronomic practices help crops express their full genetic potential by providing a favourable environment for development. Balanced fertilization improves soil fertility and plant nutrition, while proper irrigation management ensures efficient use of water resources (Lobell *et al.*, 2009; Fageria *et al.*, 2011). Integrated weed, pest and disease management reduces crop losses and maintains field health. Conservation agriculture and climate-smart agronomic practices are also gaining importance to protect natural resources and sustain productivity under changing climatic conditions. Agronomy plays a vital role in transforming improved crop varieties into successful harvests. Even the best variety cannot perform well without proper crop management. Therefore, agronomy acts as the second pillar of crop productivity by bridging the gap between scientific crop improvement and practical farming in the field.

Seed Science: ensuring quality seed for farmers.

Seed science is the branch of agriculture deals with the production, processing, testing and storage of seeds to maintain their quality and performance. Seed is the basic and critical input in agriculture which determines crop establishment and uniformity in the field. High-quality seed ensures better germination, vigorous seedlings and healthy crop leading to higher yield and improved crop productivity (Bewley *et al.*, 2013). This discipline focuses on maintaining genetic purity, physical purity and physiological quality of seed through proper seed production practices and certification systems. Seed processing techniques such as cleaning, grading and treatment help remove impurities and protect seeds from pests and diseases. Seed testing laboratories evaluate important parameters like germination percentage, moisture content and seed vigour to ensure the quality of seeds for researchers and farmers. Availability of certified and hybrid seeds has greatly contributed to improving agricultural production in many regions. Even when superior varieties and good agronomic practices are adopted but poor-quality seed can result in low yield and uneven crop stand. Therefore, seed science forms the third pillar of crop productivity by ensuring that farmers receive reliable, healthy and high-performing seed for successful cultivation.

Integration of these three interlinked disciplines for sustainable agriculture

Sustainable agriculture cannot be achieved by focusing on a single component of crop production. True progress in farming comes from the combined application of plant breeding, agronomy and seed science as an integrated system. Each discipline plays a distinct role but their real strength lies in working together to improve crop performance, resource efficiency and farm profitability. When these three interconnected discipline function in harmony they create a strong foundation for long-term agricultural sustainability. Plant breeding provides improved crop varieties with higher yield potential, resistance to pests and diseases and tolerance to environmental stresses. However, these improved varieties can deliver their full

benefits only when they are supported by proper agronomic practices such as optimum sowing time, balanced nutrient management and efficient irrigation. At the same time, seed science ensures that these superior varieties are multiplied and distributed as high quality seed with assured genetic purity and vigor reliable for farmers. The integration of these disciplines is particularly important in the context of climate change and increasing pressure on natural resources. Climate-resilient varieties developed through breeding must be matched with climate-smart agronomic practices such as conservation tillage, crop diversification and water-saving irrigation techniques. Quality seed production and storage further support this system by reducing crop failure risks and ensuring timely availability of seed even under adverse conditions. An integrated approach also helps in reducing production costs and minimizing environmental impacts. Efficient use of fertilizers, pesticides and water through agronomic management combined with resistant varieties and healthy seed. This not only protects soil and water resources but also promotes eco-friendly and sustainable farming practices that benefit both farmers and the environment. Thus, the integration of plant breeding, agronomy and seed science acts as a holistic strategy for sustainable agricultural development. Strengthening coordination among these disciplines through research, extension and farmer education will play a key role in achieving higher productivity, food security and resilience in future farming systems.

Role in Food Security and Farmer Prosperity

Ensuring food security for a growing population is one of the primary goals of modern agriculture. The combined efforts of plant breeding, agronomy and seed science have significantly contributed to increasing crop production and improving food availability. Improved varieties with higher yield potential and resistance to pests and diseases along with quality seed and scientific crop management practices, have helped farmers achieve stable and reliable harvests even under challenging environmental conditions. Farmer prosperity depends not only on higher yields but also on reduced production risks and better market value of produce. Quality seed ensures uniform crop establishment, while improved varieties often produce better quality grains, fruits and vegetables with higher nutritional value with more consumer acceptance. Efficient agronomic practices reduce losses caused by weeds, pests and nutrient deficiencies leading to better input-use efficiency and increased profitability for farmers.

These three pillars also play an important role in promoting sustainable livelihoods in rural areas. Adoption of certified seed and improved cultivation practices enhances farm productivity and encourages farmers to participate in organized seed systems and value chains. This creates employment opportunities in seed production, processing and marketing, thereby strengthening the rural economy. By strengthening the link between scientific research and field-level adoption, plant breeding, agronomy and seed science together support national food security and improve the socio-economic status of farmers. Their integrated application ensures not only higher crop production but also long-term stability and prosperity in agricultural communities.

Conclusion

Plant breeding, agronomy and seed science together form the three fundamental pillars of crop productivity and sustainable agriculture. Each discipline contributes uniquely by developing improved varieties, managing crops through scientific practices and ensuring the availability of quality seed to farmers. When applied individually, their impact is limited; however, when integrated they create a powerful system that enhances yield, improves crop quality and reduces production risks. This combined approach is essential to address current challenges such as climate change, resource scarcity and growing food demand. Future agricultural development must focus on strengthening the coordination among these three disciplines through research, extension services and farmer education programs. Adoption of improved varieties supported by proper agronomic practices and reliable seed systems will help achieve food security, environmental sustainability and farmer prosperity.

References

1. Acquaah, G. (2012). Principles of plant genetics and breeding (2nd ed.). Wiley-Blackwell.
2. Copeland, L. O and McDonald, M. B. (2001). Principles of seed science and technology (4th ed.). Springer.
3. Fageria, N. K., Baligar, V. C and Jones, C. A. (2011). Growth and mineral nutrition of field crops (3rd ed.). CRC Press, Boca Raton, FL.
4. FAO. (2017). The future of food and agriculture: Trends and challenges. Food and Agriculture Organization of the United Nations, Rome, Italy.
5. ICRISAT. (2025). ICPV 25444: Heat-tolerant pigeon pea variety. International Crops Research Institute for the Semi-Arid Tropics.
6. Lobell, D. B., Schlenker, W and Costa-Roberts, J. (2011). Climate trends and global crop production since 1980. *Science*, 333(6042), 616–620.