

Recent Advances in Plant Disease Resistance Breeding: From Conventional Approaches to Precision Genome Engineering

*Prajna Paramita Hota

M.Sc. Scholar, Department of Plant Pathology, College of Agriculture,
OUAT, Bhubaneswar, Odisha, India

*Corresponding Author's email: prajnaparamitahota49@gmail.com

Globally, plant diseases induced by fungal, bacterial, viral and nematode pathogens severely limit crop productivity, contributing to an estimated 35-40% reduction in yields. With increasing food demand, climate change, and reduced acceptance of chemical pesticides, developing disease-resistant crop varieties has become a central goal of sustainable agriculture. Conventional disease resistance breeding, based on phenotypic selection and introgression of resistance genes, has played a crucial role in crop protection but often suffers from limitations such as race-specific resistance breakdown and strong genotype × environment interactions. Recent advances in molecular biology, genomics, and genome editing technologies have revolutionized our understanding of plant-pathogen interactions and opened new avenues for developing durable and broad-spectrum disease resistance. Innovative strategies such as domain swapping and engineering of resistance R genes, random mutagenesis, promoter editing, and targeted editing of susceptibility (S) genes enable precise manipulation of plant immune responses. This article reviews the evolution of disease resistance breeding from conventional methods to modern genome-based approaches, highlights key innovative strategies with representative examples, and discusses their advantages, challenges, and future prospects. An integrated breeding approach combining classical and advanced molecular tools is essential to achieve sustainable crop protection and long-term food security.

Keywords: disease resistance breeding, R genes, susceptibility genes, CRISPR/Cas9, promoter editing, durable resistance

Introduction

Plant diseases remain one of the most serious threats to agricultural productivity and global food security. Pathogens such as fungi, bacteria, viruses, and nematodes continuously challenge crop plants, leading to significant yield losses and quality deterioration. Traditionally, disease management has relied heavily on chemical pesticides and cultural practices. However, excessive use of agrochemicals has resulted in environmental pollution, health hazards, and the rapid evolution of resistant pathogen populations. In this context, breeding for disease resistance is widely recognized as the most economical, environmentally friendly, and sustainable long-term strategy for crop protection. Disease-resistant varieties reduce dependence on chemical inputs, are farmer-friendly, and fit well within integrated disease management programs. Over the past few decades, remarkable progress in plant genetics, molecular biology, and genomics has transformed disease resistance breeding from a largely phenotype-driven process into a precise, knowledge-based discipline. This article discusses the importance of disease resistance breeding, outlines conventional approaches and their limitations, and focuses on recent innovative strategies that are shaping the future of plant disease resistance improvement.

Importance of Disease Resistance Breeding

Disease resistance breeding plays a vital role in ensuring stable crop production under diverse agro-ecological conditions. Resistant cultivars provide season-long protection against pathogens, making them particularly valuable for small and marginal farmers who may have limited access to pesticides. From an environmental perspective, resistant varieties reduce pesticide residues in food and minimize ecological damage. Moreover, climate change has altered pathogen distribution, aggressiveness, and survival, leading to the emergence of new diseases and more frequent epidemics. Under such unpredictable conditions, genetically resistant cultivars offer resilience and stability. Therefore, improving disease resistance remains a cornerstone of sustainable agriculture and food security.

Conventional Breeding for Disease Resistance

Conventional disease resistance breeding relies primarily on phenotypic selection and hybridization to introduce resistance genes into elite cultivars. In its simplest form, superior resistant plants are selected from variable populations and used in breeding programs. More commonly, a resistant donor parent is crossed with a high-yielding but susceptible recurrent parent, followed by selection in segregating generations. Mutation breeding using physical or chemical mutagens has also been employed to create novel genetic variation for resistance. These approaches have successfully delivered numerous resistant varieties in crops such as rice, wheat, barley, and tomato. However, conventional breeding faces several challenges. Many resistance traits are controlled by single major genes that provide race-specific resistance, which can be rapidly overcome by evolving pathogens. Additionally, phenotypic selection is time-consuming, labour-intensive and strongly influenced by environmental conditions.

Types of Host Resistance

Qualitative (Major Gene) Resistance

Qualitative resistance is controlled by single major resistance R genes and is usually specific to particular pathogen races. It follows the gene-for-gene relationship, where resistance occurs only when a host R gene recognizes a corresponding pathogen avirulence (Avr) gene. This form of resistance often provides complete protection but is frequently short-lived due to pathogen adaptation.

Quantitative (Polygenic) Resistance

Quantitative resistance is regulated by multiple genes or quantitative trait loci (QTLs). It is generally race-nonspecific and provides partial but durable resistance. Although more stable over time, quantitative resistance is difficult to select and strongly influenced by environmental conditions.

Shift Towards Innovative Strategies

Traditional resistance breeding, largely dependent on major R genes and phenotypic selection, often fails to provide long-term protection due to rapid pathogen evolution and strong genotype \times environment interactions. Emerging pathogens, climate change, and the need to reduce pesticide use have intensified the demand for durable and broad-spectrum resistance. Advances in genomics, functional genetics, and genome editing technologies have enabled breeders to precisely manipulate genes involved in plant immunity. As a result, disease resistance breeding has shifted from conventional selection-based approaches to targeted, design-based strategies.

Innovative Strategies in Disease Resistance Breeding

Domain Swapping and Gene Shuffling of R Genes

Domain swapping involves creating chimeric R proteins by exchanging functional domains, particularly leucine-rich repeat (LRR) and TIR domains, between related R genes. Gene shuffling uses homologous recombination or PCR-based approaches to generate novel R gene variants. These methods help identify critical residues involved in pathogen recognition and expand resistance specificity beyond naturally occurring genes.

Random Mutation of R Genes

Random mutagenesis exploits the natural role of mutation in evolution to broaden the recognition spectrum of R genes. Error-prone PCR and other mutagenesis techniques generate diverse R gene variants, some of which recognize additional pathogen strains. A classic example is the Rx gene in potato, where mutations in the LRR domain enhanced recognition of different viral variants.

Gene Editing of Susceptibility (S) Genes

Susceptibility genes are host genes exploited by pathogens to establish infection. Loss or disruption of S genes often results in durable, broad-spectrum resistance. Genome editing tools such as CRISPR/Cas9, TALENs, and ZFNs enable precise knockout of S genes. Editing of Mlo genes in wheat and PMR4 in tomato has successfully conferred resistance without major growth penalties.

Promoter Editing for Resistance

Promoter editing targets cis-regulatory elements rather than coding regions. Many bacterial pathogens use transcription activator-like effectors (TALEs) to activate host S genes by binding to effector-binding elements (EBEs) in promoters. Editing these EBES prevents pathogen-induced gene activation, mimicking recessive resistance while maintaining normal gene function. Successful examples include editing of SWEET and LOB gene promoters in rice and citrus.

Engineering of R Gene Products

Structural biology has revealed detailed interactions between R proteins and pathogen effectors, enabling rational engineering of R genes. By modifying integrated domains within NLR proteins, researchers have expanded effector recognition without replacing entire genes. Studies in rice blast resistance have demonstrated the potential of this approach to generate novel resistance specificities.

Advantages and Concerns of Innovative Strategies

Innovative resistance strategies offer several advantages, including precise gene manipulation, generation of non-transgenic plants, broad-spectrum resistance, and reduced pathogen adaptation. However, concerns remain regarding off-target effects, potential growth-yield trade-offs, regulatory hurdles, and public acceptance. Addressing these challenges through careful validation, transparent regulation, and public awareness is essential for successful deployment.

Future Prospects

The future of disease resistance breeding lies in integrating conventional and modern approaches. Artificial intelligence and machine learning will assist in predicting resistance gene performance and identifying optimal gene combinations. High-throughput phenotyping, pathogenomics and climate-informed breeding strategies will further enhance resistance durability. Ultimately, these advances will reduce dependence on chemical pesticides and improve crop resilience under changing environmental conditions.

Conclusion

Disease resistance breeding remains central to sustainable crop production and global food security. While conventional breeding methods have laid a strong foundation, their limitations necessitate innovative molecular approaches. Genome editing of susceptibility genes, promoter editing, domain swapping, and rational engineering of resistance proteins offer precise and durable solutions to evolving pathogen threats. An integrated breeding strategy that combines classical knowledge with cutting-edge technologies will be key to developing resilient crops and ensuring environmental sustainability in the future.

References

1. Blanvillain-Baufumé, S., et al., (2017). Targeted promoter editing for rice resistance to *Xanthomonas oryzae* pv. *Oryzae*. *Plant Biotechnology Journal*, 15, 306–317.

2. Buschges, R., *et al.* (1997). The barley Mlo gene: a novel control element of plant pathogen resistance. *Cell*, 88, 695–705.
3. Cesari, S., *et al.*, (2022). New recognition specificity in a plant immune receptor by molecular engineering. *Nature Communications*, 13, 1524.
4. De la Concepcion, J. C., *et al.*, (2019). Protein engineering expands effector recognition of a rice NLR receptor. *eLife*, 8, e47713.
5. Kusch, S., & Panstruga, R. (2017). Mlo-based resistance: a universal weapon against powdery mildew. *Molecular Plant-Microbe Interactions*, 30, 179–189.
6. Santillán Martínez, M. I., *et al.*, (2020). CRISPR/Cas9-targeted mutagenesis of tomato PMR4. *BMC Plant Biology*, 20, 284.
7. Zaidi, S. S.-e.-A., Mukhtar, M. S., & Mansoor, S. (2018). Genome editing: targeting susceptibility genes for plant disease resistance. *Trends in Biotechnology*, 36, 898–906.