

Soil Test Crop Response for Soil Health and Sustainability

*Meghambari Sarangi

M.Sc. Scholar, Department of Soil Science and Agricultural Chemistry,
College of Agriculture, OUAT, Bhubaneswar, Odisha, India – 751003

*Corresponding Author's email: meghambarisarangi@gmail.com

Soil fertility degradation and indiscriminate fertilizer use have emerged as major challenges to sustainable agricultural production. The Soil Test Crop Response (STCR) approach offers a scientific, site-specific, and economically viable method of nutrient management by linking soil test values with crop nutrient requirements and targeted yield goals. Unlike blanket fertilizer recommendations, STCR provides balanced fertilization based on soil nutrient supply, crop demand, and fertilizer use efficiency. This article elaborates the concept, principles, methodology, and advantages of STCR in improving soil health, enhancing nutrient use efficiency, and promoting long-term agricultural sustainability.

Keywords: Soil testing, STCR, soil health, targeted yield, nutrient use efficiency, sustainable agriculture

Introduction

Soil health is the foundation of sustainable agriculture. Continuous cropping, imbalanced fertilizer use, and neglect of soil testing have resulted in nutrient mining, declining soil fertility, and reduced productivity across many agricultural regions of India. Traditional fertilizer recommendations, often generalized across large areas, fail to account for variability in soil nutrient status, crop demand, and management practices. In this context, Soil Test Crop Response (STCR) methodology has gained importance as a scientific tool for precision nutrient management. Developed in India under the leadership of Ramamoorthy and colleagues, the STCR approach integrates soil testing with crop nutrient requirements to achieve pre-determined yield targets while maintaining soil fertility (Ramamoorthy et al., 1967). STCR thus plays a critical role in achieving soil health, economic profitability, and environmental sustainability.

Concept of Soil Test Crop Response (STCR)

The Soil Test Crop Response approach is based on the principle that crop yield is a function of nutrient supply from soil and fertilizers. It establishes quantitative relationships between:

- Soil test values
- Fertilizer nutrient application
- Crop nutrient uptake
- Yield response

The objective of STCR is to recommend fertilizer doses for a specific crop and soil type to achieve a targeted yield, rather than maximum or blanket yields. This makes STCR a site-specific and crop-specific nutrient management strategy.

Principles of STCR

The STCR approach operates on the following core principles:

1. **Targeted Yield Concept:** Fertilizer recommendations are calculated for a desired yield level, ensuring efficient input use and economic returns.

2. **Soil Nutrient Contribution:** Soil test values indicate the indigenous nutrient supplying capacity of the soil, which is considered before fertilizer addition.
3. **Fertilizer Use Efficiency:** The proportion of applied nutrients actually utilized by the crop is quantified to avoid wastage and losses.
4. **Balanced Fertilization:** STCR emphasizes balanced application of nitrogen (N), phosphorus (P), and potassium (K) to prevent nutrient imbalance and soil degradation.

Methodology of STCR

The development of STCR fertilizer equations involves several systematic steps:

1. Soil Testing

Representative soil samples are analyzed for available nutrients (N, P, K) using standardized methods. Soil test values serve as the baseline for nutrient supply estimation.

2. Field Experiments

Multi-location field experiments are conducted with graded doses of fertilizers to study crop response under varying soil fertility levels.

3. Nutrient Requirement Determination

The amount of nutrient required to produce one unit of yield (e.g., kg grain per quintal) is calculated.

4. Fertilizer Prescription Equations

Based on experimental data, fertilizer prescription equations are developed using the general form:

$$\text{Fertilizer Nutrient} = (\text{NR} \times \text{T}) - (\text{CS} \times \text{STV}) / \text{CF}$$

Where:

NR = Nutrient requirement per unit yield

T = Targeted yield

CS = Contribution from soil (%)

STV = Soil test value

CF = Contribution from fertilizer (%)

These equations allow precise fertilizer recommendations for individual fields.

Role of STCR in Soil Health Improvement

STCR contributes significantly to soil health in multiple ways:

- Prevents **nutrient mining** by accounting for soil nutrient reserves
- Avoids **excess fertilizer application**, reducing salt accumulation and soil toxicity
- Promotes **balanced nutrient supply**, maintaining soil biological activity
- Enhances **soil organic matter stabilization** when integrated with organic inputs

Studies have shown that long-term adoption of STCR maintains soil fertility levels while sustaining high productivity (Subba Rao & Srivastava, 2001).

STCR and Nutrient Use Efficiency

Low nutrient use efficiency is a major concern in Indian agriculture, particularly for nitrogen and phosphorus. STCR improves nutrient use efficiency by:

- Matching nutrient supply with crop demand
- Reducing losses through leaching, volatilization, and fixation
- Enhancing fertilizer recovery efficiency

Improved nutrient use efficiency not only reduces input costs but also minimizes environmental pollution (Fixen et al., 2015).

Integration of STCR with Integrated Nutrient Management (INM)

Modern STCR strategies increasingly integrate organic manures, crop residues, and biofertilizers along with chemical fertilizers. This STCR-INM approach:

- Improves soil physical, chemical, and biological properties
- Enhances microbial activity and nutrient cycling
- Ensures long-term sustainability of cropping systems

Such integration aligns STCR with climate-smart and sustainable agriculture goals.

Environmental and Economic Sustainability

From an environmental perspective, STCR reduces:

- Nitrate leaching into groundwater
- Phosphorus runoff causing eutrophication
- Greenhouse gas emissions from excessive fertilizer use

Economically, farmers benefit through:

- Optimized fertilizer use
- Higher benefit-cost ratio
- Stable yields across seasons

Thus, STCR supports both profitability and ecological balance.

Constraints and Future Prospects

Despite its advantages, STCR adoption faces challenges such as:

- Limited access to soil testing facilities
- Lack of awareness among farmers
- Crop- and region-specific equation availability

Future prospects include:

- Integration with digital soil health cards
- Use of GIS and decision support systems
- Development of mobile-based fertilizer recommendation tools

These advancements can enhance large-scale adoption of STCR in Indian agriculture.

Conclusion

The Soil Test Crop Response approach is a scientifically sound and practically viable nutrient management strategy that bridges soil fertility, crop productivity, and sustainability. By linking soil test values with targeted yields, STCR ensures balanced fertilization, improves nutrient use efficiency, and safeguards soil health. Wider adoption of STCR, particularly in combination with integrated nutrient management and digital technologies, can play a pivotal role in achieving sustainable and resilient agricultural systems in India.

References

1. Fixen, P. E., Brentrup, F., Bruulsema, T. W., Garcia, F., Norton, R., & Zingore, S. (2015). Nutrient/fertilizer use efficiency: Measurement, current situation and trends. *International Fertilizer Industry Association*, Paris.
2. Ramamoorthy, B., Narasimham, R. L., & Dinesh, R. S. (1967). Fertilizer application for specific yield targets on Sonora wheat. *Indian Farming*, 17(5), 43–45.
3. Subba Rao, A., & Srivastava, S. (2001). Soil test based fertilizer use in India. *Fertiliser News*, 46(7), 87–98.
4. Tandon, H. L. S. (2013). *Methods of analysis of soils, plants, waters and fertilizers*. Fertiliser Development and Consultation Organisation, New Delhi.