

Climate Change Factors: Effect of Increased CO₂ and Temperature on Plant Physiology

*Ankita Mishra and Ipsita Sahoo

M.Sc. Scholar, Department of Plant Physiology, Odisha University of Agriculture and

Technology, Bhubaneswar, Odisha-751003, India

Corresponding Author's email: amishrak925@gmail.com

Climate change is one of the major global challenges affecting agricultural productivity and ecosystem stability. Among the drivers of climate change, rising atmospheric carbon dioxide (CO₂) levels and increasing global temperature have strong impacts on plant physiological processes. Elevated CO₂ directly influences photosynthesis, respiration, water-use efficiency, and biomass accumulation. At the same time, higher temperatures change metabolic rates, growth patterns, phenology, and stress tolerance. Although increased CO₂ can boost photosynthesis and plant growth under optimal conditions, the combined effect of higher CO₂ and temperature often leads to complex and sometimes negative outcomes, especially during water and nutrient shortages. This article summarizes how increased CO₂ and temperature affect plant physiology, focusing on their implications for plant growth, crop productivity, and future agricultural sustainability as climate conditions change.

Introduction

Climate change means long-term changes in temperature, precipitation, atmospheric composition, and other environmental conditions mainly driven by human activities like burning fossil fuels, deforestation, and industrialization. One major result of climate change is the steady rise in atmospheric CO₂ levels, which have increased from pre-industrial levels of about 280 ppm to over 420 ppm in recent years. At the same time, global mean surface temperatures have risen significantly, leading to more frequent heatwaves, altered growing seasons, and increased stress on plants. Plants, being stationary organisms, are very sensitive to changes in their environment. CO₂ and temperature are two key factors that directly affect plant physiological processes like photosynthesis, respiration, transpiration, nutrient uptake, and reproductive development. Understanding how plants react to increased CO₂ and temperature is essential for predicting crop performance, ecosystem functioning, and food security in future climate scenarios.

Elevated CO₂ and Plant Physiology

Carbon dioxide is a main ingredient for photosynthesis, and its higher concentration can greatly affect plant growth and metabolism.

Effect on Photosynthesis

Elevated CO₂ generally increases the rate of photosynthesis, especially in C₃ plants, by providing more CO₂ for the enzyme RuBisCO and reducing photorespiration. This process, known as the CO₂ fertilization effect, often leads to more carbohydrate production and biomass accumulation. In contrast, C₄ plants show a smaller response due to their internal CO₂-concentrating mechanisms.

Effect on Stomatal Conductance and Water Use Efficiency

Higher CO₂ levels cause partial closure of stomata, reducing transpiration rates. As a result, plants have better water-use efficiency, which helps them conserve water in dry conditions. However, prolonged stomatal closure may also lower leaf cooling and increase vulnerability to heat stress.

Effect on Growth and Biomass Allocation

Increased CO₂ often encourages vegetative growth, leaf area expansion, and root development. Plants tend to allocate more biomass to their roots, improving nutrient and water acquisition. However, this positive effect may decrease over time due to nutrient limitations, particularly from nitrogen deficiency.

Increased Temperature and Plant Physiology

Temperature is a key factor controlling enzymatic reactions and metabolic processes in plants. Rising temperatures due to climate change have both positive and negative effects on plant physiology.

Effect on Metabolism and Respiration

Higher temperatures increase enzymatic activity, leading to higher respiration rates. While moderate warming can promote growth, excessive temperatures may cause respiratory losses to surpass photosynthetic gains, resulting in lower net productivity.

Effect on Growth and Development

Temperature affects important developmental stages, including seed germination, flowering, fruit set, and maturity. Higher temperatures often shorten the duration of crop growth, leading to early flowering and reduced grain-filling periods, which negatively affect yield and quality.

Effect on Photosynthetic Apparatus

Heat stress can damage chloroplast membranes, disrupt photosystem II, and reduce chlorophyll content. Prolonged exposure to high temperatures can impair photosynthesis and cause oxidative stress from the build-up of reactive oxygen species (ROS).

Combined Effects of Elevated CO₂ and Temperature

In natural environments, plants face changes in CO₂ and temperature at the same time, making the combined effects complex. Increased CO₂ might partially alleviate heat stress by enhancing photosynthesis and water-use efficiency. However, extreme temperature increases often counteract the benefits of CO₂ enrichment by raising respiration rates, speeding up senescence, and disrupting reproductive processes. Additionally, the positive response to elevated CO₂ depends heavily on other factors like soil moisture, nutrient availability, and specific plant traits. In nutrient-poor or dry conditions, the benefits of increased CO₂ may be limited.

Implications for Agriculture and Ecosystems

Changes in plant physiological responses due to increased CO₂ and temperature have major implications for agricultural productivity and natural ecosystems. While some crops may benefit from higher CO₂, heat stress and related factors can lower yield stability and nutritional quality. Furthermore, climate-driven physiological changes may alter plant-pest interactions, weed competitiveness, and ecosystem composition. Creating climate-resilient crop varieties that have better heat tolerance and resource efficiency is crucial for sustaining agricultural production in the face of future climate challenges.

Conclusion

Increased atmospheric CO₂ and rising temperatures are key climate change factors that significantly impact plant physiology. Higher CO₂ can boost photosynthesis, growth, and water-use efficiency, while higher temperatures affect metabolic balance, development, and

stress tolerance. The combined effects of these factors are complex and highly dependent on environmental conditions and plant species. A deeper understanding of how plants respond to climate change is vital for improving adaptation strategies and ensuring food security as the world warms.

References

1. Ainsworth, E. A., & Rogers, A. (2007). The response of photosynthesis and stomatal conductance to rising CO₂: mechanisms and environmental interactions. *Plant, Cell & Environment*, 30, 258–270.
2. Long, S. P., Ainsworth, E. A., Leakey, A. D. B., Nösberger, J., & Ort, D. R. (2006). Food for thought: lower-than-expected crop yield stimulation with rising CO₂ concentrations. *Science*, 312, 1918–1921.
3. Taub, D. R., Miller, B., & Allen, H. (2008). Effects of elevated CO₂ on the protein concentration of food crops: a meta-analysis. *Global Change Biology*, 14, 565–575.
4. Sage, R. F., & Kubien, D. S. (2007). The temperature response of C₃ and C₄ photosynthesis. *Plant, Cell & Environment*, 30, 1086–1106.
5. Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes: effect on plant growth and development. *Weather and Climate Extremes*, 10, 4–10.
6. Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. R. (2007). Heat tolerance in plants: an overview. *Environmental and Experimental Botany*, 61, 199–223.
7. Leakey, A. D. B. (2009). Rising atmospheric carbon dioxide concentration and the future of C₄ crops for food and fuel. *Proceedings of the Royal Society B*, 276, 2333–2343.
8. IPCC (2021). *Climate Change 2021: The Physical Science Basis. Sixth Assessment Report*, Intergovernmental Panel on Climate Change, Cambridge University Press.