

Metabolic Engineering of Secondary Metabolites: Boosting Plant Defence and Nutrition

*Ms. Lipsha Rani Swain, Ms. Rushali Mohanty and Ms. Prachi Pratishruti
M. Sc Scholar, College of Agriculture, Odisha University of Agriculture and
Technology, Bhubaneswar-751003, Odisha, India

*Corresponding Author's email: lipsharaniswain380@gmail.com

Secondary metabolites play a vital role in plant defence mechanisms and contribute significantly to human nutrition. Recent advances in metabolic engineering have enabled precise manipulation of biosynthetic pathways to enhance crop resistance against pests and diseases while improving nutritional quality. This review discusses the classification and functional importance of major secondary metabolites, outlines contemporary metabolic engineering strategies, and highlights key applications in improving plant defence and biofortification. Challenges associated with pathway complexity, metabolic imbalance, and regulatory concerns are also examined, along with future prospects for sustainable agriculture and food security.

Keywords: Secondary metabolites; metabolic engineering; plant defence; biofortification; synthetic biology

Introduction

Secondary metabolites comprise a diverse group of biologically active compounds synthesized by plants and microorganisms as part of their adaptive strategies. Although these compounds are not directly involved in basic metabolic processes such as growth and reproduction, they play a crucial role in mediating interactions between plants and their environment. Many secondary metabolites function as defensive chemicals against herbivores, insects, and pathogens, while others contribute to stress tolerance and ecological communication, including pollinator attraction. In recent years, metabolic engineering has emerged as a powerful approach to modify and regulate the biosynthetic pathways responsible for secondary metabolite production. By manipulating specific genes, enzymes, and regulatory elements, it is possible to enhance the accumulation of desirable metabolites or introduce novel biosynthetic capabilities. In agricultural systems, such interventions can strengthen inherent plant defence mechanisms, thereby reducing dependence on synthetic pesticides. Simultaneously, the enhancement of nutritionally valuable metabolites offers promising solutions to micronutrient deficiencies affecting global populations. This review critically examines the classification, functional significance, and engineering strategies of secondary metabolites, with particular emphasis on their applications in plant defence and nutritional improvement.

Secondary Metabolites: Classification and Functions

Secondary metabolites are generally classified based on their biosynthetic origin:

- Alkaloids: Nitrogen-containing compounds like morphine and nicotine that are often toxic to herbivores and pathogens (Facchini, 2001).
- Terpenoids: Derived from isoprene units, including carotenoids and essential oils; many of these act as repellents or attractants (Dewick, 2009).

- Phenolics: Aromatic compounds such as flavonoids and tannins that provide antioxidant effects and structural support through lignin (Tattini et al., 2014). These metabolites aid plant defence by acting as toxins, feeding deterrents, and antimicrobial agents. Nutritionally, many secondary metabolites serve as antioxidants, vitamins, or precursors to essential micronutrients that benefit human health (Lattanzio, 2013).

Metabolic Engineering Approaches

Metabolic engineering entails modifying genetic and enzymatic components to change or enhance metabolic fluxes. Key strategies include:

- Gene Overexpression or Silencing: To raise or lower the levels of enzymes that control rate-limiting steps (Keasling, 2010).
- Pathway Reconstruction: Inserting external genes or synthetic pathways to produce new or improved metabolites (Nielsen and Keasling, 2016).
- Regulatory Element Engineering: Changing promoters and transcription factors to optimize expression patterns (Zhao and Dixon, 2010).
- Precursor Supply Optimization: Increasing the availability of substrates and cofactors to enhance pathway efficiency (Ajikumar et al., 2010).

Advanced tools like CRISPR/Cas genome editing, RNA interference, synthetic biology, and multi-omics platforms enable precise pathway manipulation and a detailed understanding of metabolic networks (Liu et al., 2019).

Engineering Secondary Metabolites for Plant Defence

Secondary metabolites are essential for plant immunity, providing chemical barriers against pests and pathogens. Metabolic engineering has been used to:

- Enhance Phytoalexin Production: Overexpress genes involved in the biosynthesis of antimicrobial compounds to enhance resistance to pathogens (Ahuja et al., 2012).
- Increase Terpenoid-Based Repellents: Engineer terpene synthases to boost the production of insect-repellent volatile compounds (Schilmiller et al., 2009).
- Modulate Phenolic Compounds: Raise levels of flavonoids and lignin to strengthen both physical and chemical defences (Zhang et al., 2017).

For example, engineered overexpression of sesquiterpene synthases in crops has led to increased resistance against insect herbivory (Mao et al., 2006). Manipulating flavonoid biosynthetic genes can enhance antioxidant capacity, indirectly supporting plant stress resilience (Xu et al., 2015).

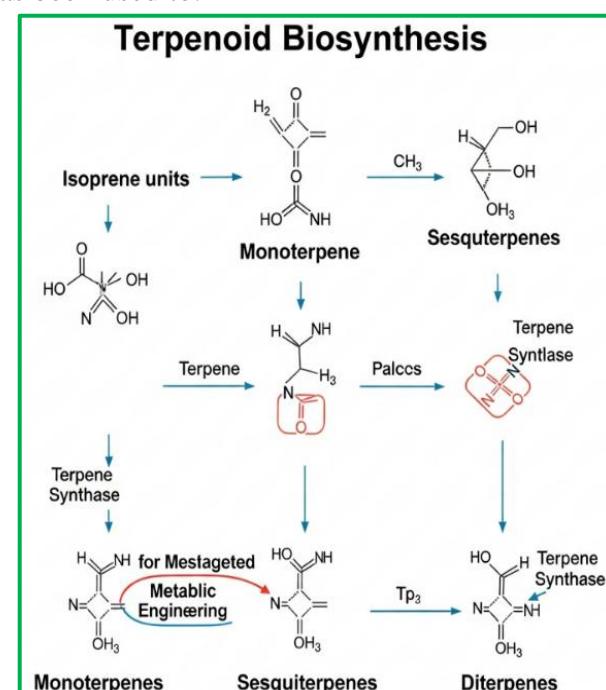


Figure 1. Simplified terpenoid biosynthesis pathway highlighting key enzymatic steps targeted in metabolic engineering approaches. (Source: Adapted and modified from Dewick (2009).)

Metabolic Engineering for Nutritional Enhancement

Biofortification—improving the nutritional profile of crops—is a major application of metabolic engineering. Secondary metabolites targeted for nutritional improvement include:

- Carotenoids: Engineering the biosynthesis of β -carotene to help with vitamin A deficiency, as seen in the development of Golden Rice (Paine et al., 2005).
- Flavonoids and Anthocyanins: Increasing antioxidant flavonoids through transcription factor manipulation to enhance health benefits (Zhang et al., 2013).

- Glucosinolates and Other Phytochemicals: Boosting cancer-preventive compounds in Brassica species via pathway engineering (Mikkelsen et al., 2010).

Table 1. Examples of crops engineered for enhanced secondary metabolite production

Crop	Target metabolite	Engineering strategy	Outcome	Reference
Rice	β-carotene	Pathway reconstruction	Improved provitamin A content	Paine et al., 2005
Tomato	Terpenoids	Gene overexpression	Enhanced insect resistance	Schilmiller et al., 2009
Maize	Anthocyanins	Transcription factor regulation	Increased antioxidant activity	Zhang et al., 2013
Brassica spp.	Glucosinolates	Pathway optimization	Enhanced health-promoting compounds	Mikkelsen et al., 2010

These efforts not only enhance nutrient content but also improve flavour, colour, and shelf-life of crops.

Challenges and Future Perspectives

Despite the progress made, several challenges remain:

- Pathway Complexity: Biosynthetic pathways are often complex and controlled at multiple levels (Wurtzel and Kutchan, 2016).
- Metabolic Flux Imbalance: Overproduction can lead to a depletion of precursors or the accumulation of toxic intermediates (Keasling, 2010).
- Environmental Influence: The performance of engineered traits can vary under field conditions (Kliebenstein, 2014).
- Regulatory and Social Acceptance: Genetically modified crops face regulatory challenges and public concerns (Lucht, 2015).

Future developments will likely focus on integrating systems biology approaches, advanced genome editing tools (like base editors), and synthetic biology to design custom pathways. Microbial platforms for creating secondary metabolites offer sustainable production options. Combining these strategies can enhance crop resilience and nutrition while supporting global food security.

Discussion

Metabolic engineering of secondary metabolites offers a sustainable approach to strengthening crop defence mechanisms while simultaneously improving nutritional quality. By enhancing endogenous chemical defences, crops can better withstand biotic stresses, thereby reducing reliance on external chemical inputs. However, the complexity of metabolic networks and the influence of environmental factors on gene expression present ongoing challenges. Addressing these issues will require the continued integration of systems biology, advanced genome-editing technologies, and field-level validation to ensure stable trait expression under diverse growing conditions.

Conclusion

In conclusion, metabolic engineering represents a versatile and effective strategy for developing crop varieties with improved resistance to pests and diseases and enhanced nutritional value. By harnessing and optimizing secondary metabolite pathways, it is possible to promote sustainable agricultural practices while contributing to global food and nutritional security. Continued collaboration between researchers, breeders, and farmers will be essential to translate these technological advancements into practical and widely adopted agricultural solutions.

References

1. Ahuja, I., Kissen, R., & Bones, A.M. (2012). Phytoalexins in defence against pathogens. *Trends in Plant Science*, 17(2), 73-90.
2. Ajikumar, P.K., Tyo, K., Carlsen, S., Mucha, O., Phon, T.H., & Stephanopoulos, G. (2010). Terpenoids: Opportunities for biosynthesis of natural product drugs using engineered microorganisms. *Molecular Pharmaceutics*, 7(3), 630-641.
3. Dewick, P.M. (2009). *Medicinal Natural Products: A Biosynthetic Approach* (3rd ed.). Wiley.
4. Facchini, P.J. (2001). Alkaloid biosynthesis in plants: Biochemistry, cell biology, molecular regulation, and metabolic engineering applications. *Annual Review of Plant Physiology and Plant Molecular Biology*, 52, 29-66.
5. Keasling, J.D. (2010). Manufacturing molecules through metabolic engineering. *Science*, 330(6009), 1355-1358.
6. Kliebenstein, D.J. (2014). Plant defence compounds: Systems biology and metabolic engineering. *Annual Review of Plant Biology*, 65, 253-278.
7. Lattanzio, V. (2013). Phenolic compounds: Introduction. In V. Lattanzio (Ed.), *Secondary Metabolites in Plant Defence* (pp. 1-24). Springer.
8. Liu, H., Ding, Y., Zhou, Y., Jin, W., Xie, K., & Chen, L. (2019). CRISPR-P 2.0: An improved CRISPR-Cas9 tool for genome editing in plants. *Molecular Plant*, 12(5), 1261-1263.
9. Lucht, J.M. (2015). Public acceptance of plant biotechnology and GM crops. *Viruses*, 7(8), 4254-4281.
10. Mao, Y.B., Liu, Y.Q., Chen, D.Y., Chen, F., Fang, X., & Wang, J.W. (2006). Jasmonate response decay and defence metabolite accumulation contributes to insect resistance in plants. *Plant Cell*, 18(9), 3129-3140.
11. Mikkelsen, M.D., Petersen, B.L., & Halkier, B.A. (2010). Biosynthesis and metabolic engineering of glucosinolates. *Phytochemistry*, 71(14-15), 1675-1681.
12. Nielsen, J., & Keasling, J.D. (2016). Engineering cellular metabolism. *Cell*, 164(6), 1185-1197.
13. Paine, J.A., Shipton, C.A., Chaggar, S., Howells, R.M., Kennedy, M.J., Vernon, G., ... & Drake, R. (2005). Improving the nutritional value of Golden Rice through increased pro-vitamin A content. *Nature Biotechnology*, 23(4), 482-487.
14. Schilmiller, A.L., Gilgallon, K.L., Ghosh, B., Jones, A.D., & Last, R.L. (2009). Role of the tomato terpene synthase gene family in the production of floral volatiles. *The Plant Journal*, 60(3), 392-403.
15. Tattini, M., Gravano, E., Pinelli, P., Mulinacci, N., Romani, A., & Remorini, D. (2014). Flavonoids accumulate in leaves and glandular trichomes of *Nicotiana glauca* in response to UV-B radiation. *Plant Physiology*, 124(4), 1371-1380.
16. Wurtzel, E.T., & Kutchan, T.M. (2016). Plant metabolism, the diverse chemistry set of the future. *Science*, 353(6305), 1232-1236.
17. Xu, W., Dubos, C., & Lepiniec, L. (2015). Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. *Trends in Plant Science*, 20(3), 176-185.
18. Zhang, Y., Butelli, E., & Martin, C. (2013). Engineering anthocyanin biosynthesis in plants. *Current Opinion in Plant Biology*, 16(3), 343-350.
19. Zhang, Z., Li, X., Zhao, X., Wang, Y., & Zhu, Y. (2017). Lignin biosynthesis and its role in plant defence. *Molecular Plant Pathology*, 18(6), 1227-1233.
20. Zhao, J., & Dixon, R.A. (2010). The 'ins' and 'outs' of flavonoid transport. *Trends in Plant Science*, 15(2), 72-80.