

Sustainable Use of Dry Flowers: Transforming Floral Waste through Value Addition

*Ashutosh Padhy, Asutosh Mishra and Shubhasmita Nayak

College of Agriculture, OUAT, Bhubaneswar, Odisha, India – 751003

*Corresponding Author's email: ashutoshpadhy2000@gmail.com

Flowers play an integral role in India's cultural, social, and religious life; however, their extensive use generates substantial quantities of floral waste, particularly from temples, markets, and ceremonial events. This biodegradable waste, commonly referred to as *nirmalya*, poses environmental challenges when improperly managed, yet offers significant scope for sustainable reuse. This article synthesizes evidence from published research to examine value-addition pathways for transforming floral waste into economically viable and environmentally beneficial products. Research backed approaches such as dry-flower preservation, glycerinization, vermicomposting, aerobic composting, and extraction of dyes and oils are discussed in terms of technical feasibility, cost-effectiveness, and livelihood potential. Empirical studies indicate that low-cost technologies like air-drying and composting are well suited for small producers and women-led self-help groups, while advanced techniques such as silica-gel drying and freeze-drying cater to premium markets. Overall, value addition in floral waste management supports circular economy principles by reducing environmental pollution, enhancing resource efficiency, and generating sustainable income opportunities for rural and urban communities.

Keywords: Floral waste management, Dry flower, Value addition

Introduction

In India flowers are woven into everyday life such as in rituals, public festivals, markets, weddings and household decor. That ubiquity produces a paradox: while flowers are culturally priceless in the moment, large quantities become waste shortly afterwards. Scientific studies show that this "floral waste" often called *nirmalya* where the flowers are temple offerings creates municipal-biodegradable streams that are under-utilized; yet the same biomass can be converted into value-added products such as preserved (dry) flowers, potpourri, incense, dyes and compost combining environmental benefit with new income sources for small producers and women groups. This article explains the science backed pathways for transforming floral waste, the practical technologies that work at low cost, and the evidence on environmental and livelihood gains (Vijay and Baweja, 2025).

How large and problematic is floral waste

Peer-reviewed and institutional studies show that India's floriculture sector is large and growing: recent academic reviews and national horticulture analyses place the area under floriculture in the few-hundred-thousand hectares range and annual flower production in the millions of tonnes, driven by both loose (offering) flowers and cut-flower cultivation. This scale makes waste streams from markets, temples and ceremonies substantial at city level especially during festivals. Managing that organic material is therefore an important urban-waste challenge and an opportunity for circular reuse. Field studies of temple waste (*nirmalya*) document typical composition such as petals, leaves, small twigs, sometimes ritual residues like oils and food and show that untreated streams rapidly produce leachate, odor

and pathogen concerns if dumped in drains or mixed with municipal solid waste. Several empirical papers have examined collection and treatment options like vermicomposting and aerobic composting and emphasize that pre-sorting, removal of contaminants and rapid processing are needed to avoid public-health problems (Chakole & D, 2014).

Value-addition pathways backed by research

The published literature groups practical value-addition from floral waste into three broad and evidence-supported pathways:

- (1) preservation and dry-flower product manufacture,
- (2) biomass conversion (compost / vermicompost / bio-products), and
- (3) extractive uses (dyes, essential oils).

Each pathway has peer-reviewed demonstrations and laboratory studies that show technical feasibility.

- ❖ Drying and preservation for decorative products: A large body of research compares drying methods and their outcomes (colour retention, structure, moisture, longevity). Low-cost air-drying works well for robust flowers (e.g., celosia, statice, marigold), while silica-gel embedding is empirically superior for delicate petals (roses, orchids) because it reduces cell collapse and preserves shape and colour more effectively. Freeze-drying produces the closest resemblance to fresh flowers but is capital-intensive and generally recommended only for premium export items where product price justifies cost and the laboratory studies quantify moisture reduction, colour stability and mechanical strength across methods (Jeevitha & Jadhav, 2020).
- ❖ Glycerinization for foliage and pliable arrangements: Experimental studies demonstrate that glycerin solutions (concentration and uptake method matter) preserve leaf suppleness and texture, producing long-lasting components for wreaths and decorative arrangements. Agricultural research institutes provide protocols showing uptake behaviour, optimal concentrations and practical steps to scale glycerin preservation for value-added foliage products (Singh et al., 2018).
- ❖ Biomass recycling through vermicompost and aerobic composting: Peer-reviewed field trials on temple floral waste show that vermicomposting and aerated composting effectively convert floral biomass into rich organic manure and comparative studies report differences in decomposition rate, nutrient content and pathogen reduction between methods. These outputs both close the nutrient loop and reduce methane and leachate risks associated with landfill disposal (Singh et al., 2018).
- ❖ Extractives such as dyes and oils: Though more specialized, laboratory studies have shown that petals and certain floral byproducts can yield natural dyes and small quantities of fragrant compounds. Extraction yields vary by species and require solvent or distillation steps; thus, extractive uses are attractive where particular high-value species are available or where small-batch artisanal markets exist (Vijay and Baweja, 2025).

What the evidence says about costs, income and scale

Empirical economic studies and reviews of value-addition in floriculture indicate that low-capital technologies such as air-drying, simple grinding for incense, small-scale vermicomposting have short payback times and suit women self-help groups and microenterprises. The economic analyses show that value addition raises unit returns substantially compared with selling loose, perishable flowers; however, returns depend on product quality, packaging and market access. For premium processes such as silica-gel drying and freeze-drying, researchers note that scale, consistent feedstock and access to export or boutique domestic markets are necessary to cover capital and operational costs (Vijay and Baweja, 2025).

Practical steps for community implementation

Researchers working on temple waste and value-addition recommend a sequence that minimizes contamination and maximizes product yield:

1. Segregation at source: Studies repeatedly emphasize that separating clean floral material such as petals and foliage from contaminated waste like food matter and plastics is essential to avoid product contamination and processing delays.
2. Drying method matched to species: Use air-drying for robust, silica-gel for delicate blooms, and glycerin treatment for foliage as each method is specified in experimental protocols with stepwise timings and expected moisture endpoints (Jeevitha & Jadhav, 2020).
3. Quality control and hygiene: Scientific work on post-harvest handling shows that harvesting at correct maturity, removing foreign matter and using hygienic drying areas reduces spoilage and improves marketability (Vijay and Baweja, 2025).
4. Diversification to manage seasonality: Research suggests combining product lines like incense, potpourri, compost so that fluctuating supplies can be converted across complementary products, smoothing incomes and raw-material usage.

Environmental outcomes

Peer-reviewed composting and waste-management studies report measurable reductions in landfill organic load and improved soil properties where compost is used. Laboratory and field measurements show that controlled aerobic composting and vermicomposting lower the risk of anaerobic methane emissions from dumps and produce nutrient-rich material beneficial for urban gardens or smallholder fields. Conversion of floral waste into dry products also reduces direct discharge into drains, mitigating eutrophication risks documented in municipal studies (Chakole & D, 2014).

Constraints and solutions

Academic studies identify recurring barriers such as inconsistent quality of feedstock (contamination, mixed species), seasonality, lack of design/marketing skills, and insufficient linkages to markets.

Research based recommendations include: training modules for SHGs and municipalities, creation of standardized SOPs for drying and processing, and forming producer groups or cooperatives to achieve the volumes and quality required for premium markets. Evidence-based pilot projects show these institutional supports significantly improve income outcomes (Singh et al., 2018).

Conclusion

Floral waste is not merely an urban nuisance, it is a biomass resource that, when processed using proven drying, preservation and composting techniques, yields marketable products and environmental benefits. Low-cost, scalable methods such as air-drying, basic glycerinization, and vermicomposting are especially suitable for small producers and women SHGs, while more advanced techniques such as silica-gel embedding and freeze-drying are open pathways to higher-value niches. The evidence recommends a pragmatic approach: prioritize segregation and simple processing to begin, train producer groups in SOPs from floriculture research centres, and gradually move up the value chain as quality and market access improve. With this evidence-based approach, communities can convert petals into profit and turn a seasonal waste problem into a year-round and sustainable livelihood opportunity (Vijay and Baweja, 2025).

References

1. Vijay, J., & Baweja, H. S. (2025). Value addition in Floriculture: A review. *Journal of Ornamental Horticulture*, 28(1), 9-19. <https://epubs.icar.org.in/index.php/JOH/article/download/169340/61503/478308>
2. Jeevitha, K. M., & Jadhav, V. S. (2020). Silica-Gel Drying an Effective Preservation Technique for Value Addition of Orchid Flowers. *Current Journal of Applied Science and Technology*, 39(48), 26–33. <https://doi.org/10.9734/cjast/2020/v39i4831194>

3. Chakole, P., & D, J. (2014). Comparative study of nirmalya solid waste treatment by vermicomposting and artificial aeration composting. *Current World Environment*, 9(2), 412–420. <https://doi.org/10.12944/cwe.9.2.23>
4. Singh, B., Jain, R., Sindhu, S. S., Kumar, P., Yadav, H., & Kumar, R. (2018). Standardization of glycerine preservation for ornamental foliage of different species suitable for value addition. *The Indian Journal of Agricultural Sciences*, 88(12), 1879–1886. <https://doi.org/10.56093/ijas.v88i12.85440>