

Advanced Spectroscopic Techniques for Plant Disease Diagnostics

* Ankita Biswal

M.Sc. Scholar, Department of Plant Pathology, College of Agriculture,
OUAT, Bhubaneswar, Odisha, India-751003

* Corresponding Author's email: ankitasneha2302@gmail.com

Plant diseases remain a major constraint in achieving sustainable agricultural productivity. Pathogens such as fungi, bacteria, viruses and nematodes reduce both yield and quality of crops, leading to serious economic losses. Globally, biotic stresses account for nearly 20–40% reduction in agricultural output. One of the central challenges in plant pathology is the timely and accurate detection of diseases, especially at early stages when visible symptoms are absent or minimal. Traditional diagnostic approaches—including visual symptom observation, pathogen culturing, serological assays and molecular techniques—are widely used but have several limitations. These methods are often time-consuming, destructive, laboratory-dependent and require skilled personnel. Most importantly, they usually confirm disease only after significant damage has occurred. To overcome these drawbacks, researchers are increasingly turning to spectroscopic techniques, which offer rapid, non-destructive and sensitive detection of disease-related changes in plants.

Spectroscopy: A Conceptual Overview

Spectroscopy refers to the study of the interaction between electromagnetic radiation and matter. When light interacts with plant tissue, it can be absorbed, reflected or scattered depending on the chemical composition and internal structure of the tissue. Healthy and diseased plants differ in terms of pigments, water content, cell wall components and metabolites, and these differences influence how light behaves. As a result, each physiological condition of the plant produces a characteristic pattern known as a spectral signature or chemical fingerprint. By analyzing these signatures, spectroscopy enables discrimination between healthy and diseased plants and provides insight into underlying biochemical changes.

Basis of Spectroscopic Disease Detection

Most spectroscopic techniques applied in plant disease diagnostics are rooted in the principle that pathogen infection alters plant biochemistry. Changes such as chlorophyll degradation, modification of cell wall polymers, accumulation of defence compounds and altered water status occur soon after infection. These biochemical changes affect molecular vibrations and electronic transitions, which are captured as changes in spectral responses. Thus, spectroscopy does not directly detect the pathogen itself but rather identifies the physiological and biochemical consequences of infection. This makes it especially useful for early-stage and non-invasive disease detection.

Visible and Near-Infrared (Vis–NIR) Spectroscopy

Visible and Near-Infrared spectroscopy operates in the wavelength range of approximately 400–2500 nm. In this technique, broad-spectrum light interacts with plant tissues, and the reflected radiation is recorded to generate a reflectance spectrum. The visible region mainly provides information about plant pigments such as chlorophyll, while the near-infrared region is influenced by internal leaf structure and water content. In plant disease diagnostics, Vis–

NIR spectroscopy is commonly used to assess overall plant health and stress. Disease-induced changes often appear as variations in chlorophyll absorption bands, shifts in the red-edge region and changes in water absorption features. However, since similar spectral changes may also arise due to abiotic stresses like nutrient deficiency or drought, Vis-NIR spectroscopy alone may lack sufficient specificity for precise disease identification.

Raman Spectroscopy

Raman spectroscopy is a vibrational spectroscopic technique that provides detailed molecular information. It is based on the Raman effect, where a small fraction of incident monochromatic laser light undergoes inelastic scattering after interacting with molecular vibrations. The resulting frequency shift, known as the Raman shift, is highly specific to molecular structure. Raman spectroscopy is particularly valuable in plant pathology because it can be applied directly to intact plant tissues with minimal or no sample preparation. It enables detection of disease-related changes in pigments, proteins, carbohydrates and secondary metabolites. Although Raman signals are inherently weak and may be affected by fluorescence, advancements in instrumentation and data processing have significantly improved its practical applicability.

Fourier Transform Infrared (FTIR) Spectroscopy

Fourier Transform Infrared spectroscopy measures the absorption of mid-infrared radiation by molecular bonds within a sample. Each functional group absorbs infrared radiation at characteristic frequencies, allowing identification of biochemical constituents such as proteins, lipids, carbohydrates and nucleic acids. In plant disease studies, FTIR spectroscopy is mainly used under laboratory conditions to investigate molecular changes associated with pathogen infection. It provides a comprehensive biochemical profile of plant tissues but is less suitable for direct field application due to sensitivity to environmental conditions and sample handling requirements.

Nuclear Magnetic Resonance (NMR) Spectroscopy

Nuclear Magnetic Resonance spectroscopy is a powerful analytical technique that examines the behavior of atomic nuclei in a strong magnetic field. It offers unparalleled structural and metabolic information and is widely regarded as a reference method for molecular identification. In plant pathology, NMR is primarily used for metabolic profiling to study infection-induced biochemical shifts. Its ability to analyze aqueous samples without interference from water is a major advantage. However, the requirement for large sample quantities, high operational costs and sophisticated infrastructure limits its routine use in disease diagnostics.

Hyperspectral Imaging (HSI)

Hyperspectral imaging integrates imaging and spectroscopy to capture both spatial and spectral information simultaneously. The resulting dataset, known as a hypercube, contains a complete spectrum for every pixel in the image. This technique allows visualization of disease distribution across leaves, canopies or entire fields, making it highly useful for disease mapping and severity assessment. Despite its strong potential, hyperspectral imaging generates large datasets that require advanced analytical tools and is influenced by environmental and illumination conditions.

MALDI-TOF Mass Spectrometry

Matrix-Assisted Laser Desorption Ionization–Time of Flight mass spectrometry is a protein-based analytical technique widely used for rapid identification of microorganisms. It generates characteristic protein profiles that serve as molecular fingerprints for specific pathogens. In plant pathology, MALDI-TOF is mainly applied for accurate identification of bacterial and fungal pathogens in laboratory settings. While the technique is fast and highly specific, its dependence on expensive instrumentation and reference databases limits its use to well-equipped laboratories.

Advantages of Spectroscopic Techniques

Spectroscopic approaches offer several advantages over conventional diagnostic methods. They are non-destructive and non-invasive, enabling repeated measurements on the same plant. These techniques provide rapid and real-time results, require minimal sample preparation and are often label-free. Importantly, spectroscopy enables detection of disease-related changes before visible symptoms develop, supporting early intervention and precision disease management.

Limitations and Challenges

Despite their advantages, spectroscopic techniques face practical challenges. Environmental factors such as light variability, dust and humidity can influence spectral measurements. Data interpretation is complex and often relies on chemometric and machine-learning approaches. High initial investment costs and limited ability to clearly distinguish biotic stress from abiotic stress remain significant constraints.

Future Prospects

Future developments in spectroscopic plant disease diagnostics are expected to focus on integration with digital agriculture. Advances in artificial intelligence will improve automated disease classification and reduce reliance on expert interpretation. Miniaturization of instruments may lead to affordable handheld devices for on-field diagnosis. The integration of spectroscopy with drones, satellite imaging and Internet of Things platforms holds promise for large-scale disease surveillance and early warning systems. Additionally, the development of continuous plant health monitoring tools, such as wearable or embedded sensors, may transform disease management from reactive to preventive strategies.

Conclusion

Spectroscopic techniques represent a significant advancement in plant disease diagnostics by enabling rapid, non-invasive and early detection of disease-related changes. Although challenges related to cost, data complexity and environmental sensitivity remain, continuous technological progress is steadily improving their applicability. With proper integration into precision agriculture systems, spectroscopy has the potential to play a central role in sustainable plant disease management and global food security.

References

1. Chakraborty, S., Sahoo, R. N., Das, D. K., Selvaprakash, R., Ranjan, R., & Mukherjee, J. (2023). Assessment of wheat yellow rust severity through hyperspectral remote sensing. *Journal of Agricultural Physics*, 23(2), 216–226.
2. Faber, C. (2021). Advanced spectroscopic techniques for plant disease diagnostics: A review. *Journal of Plant Pathology*, Advance online publication.
3. Ji, X., Xue, J., Shi, J., Wang, W., Zhang, X., Wang, Z., Lu, W., Liu, J., Fu, Y. V., & Xu, N. (2025). Noninvasive Raman spectroscopy for the detection of rice bacterial leaf blight and bacterial leaf streak. *Talanta*, 282, 126962.
4. Niculau, E. S., Ferreira, D., Rodrigues-Filho, E., Behlau, F., Magnani, R. F., Toffano, L., Prieto, E. L., Fernandes, J. B., & Silva, M. F. G. F. (2022). MALDI-TOF mass spectrometry for the diagnosis of citrus canker caused by *Xanthomonas citri* subsp. *citri*. *Molecules*, 27(24), 8947.
5. Ojeda, J., & Dittrich, M. (2012). Fourier transform infrared spectroscopy for molecular analysis of microbial cells. In *Methods in Molecular Biology* (Vol. 881, pp. 187–211). Humana Press.