

Intelligent Agriculture: The Rise of AI in Animal Husbandry

Rushikesh Ramchandra Kore¹, D. K. Deokar², *Swapnil M. Bagul³,
Rushikesh D. Sathe³ and D. K. Kamble⁴

¹Ph.D. Scholar, Department of Animal Husbandry and Dairy Science, Post Graduate Institute, Mahatma Phule Krishi Vidyapeeth, Rahuri, Ahilyanagar, Maharashtra, India

²Associate Professor (Animal Husbandry and Dairy Science), Post Graduate Institute, Mahatma Phule Krishi Vidyapeeth, Rahuri, Ahilyanagar, Maharashtra, India

³Ph.D. Scholar, Department of Animal Husbandry and Dairy Science, Post Graduate Institute, Mahatma Phule Krishi Vidyapeeth, Rahuri, Ahilyanagar, Maharashtra, India

⁴Head, Department of Animal Husbandry and Dairy Science, Mahatma Phule Krishi Vidyapeeth, Rahuri- 413722, Ahilyanagar, Maharashtra, India

*Corresponding Author's email: swapnilbagul017@gmail.com

The livestock and animal husbandry sector are entering a crucial transition due to rapid population growth, changing dietary preferences and increasing strain on natural resources. Global projections indicate a nearly 70% rise in the demand for livestock products, including milk, meat, eggs and wool over the next thirty years, driven primarily by population growth, urbanization and income increases in developing nations. Conventional production systems face significant sustainability, welfare, environmental and economic efficiency challenges in meeting this demand. The ongoing digital transformation is also noteworthy, with over half of the global population now connected to the internet, facilitating data generation, communication and information sharing even in rural areas. This connectivity allows livestock farmers to access digital tools, including mobile apps, cloud platforms and automated systems, which are expected to revolutionize livestock management.

Artificial Intelligence (AI) is positioned as a transformative solution in this context. Defined as machine intelligence capable of performing tasks requiring human cognitive abilities, AI systems can learn, recognize patterns, reason and make decisions. In animal husbandry, AI leverages sensors, cameras, wearable devices and databases to continuously monitor animals and farm environments, aiding in timely decisions concerning feeding, breeding, health management and housing. Integrating AI within livestock production aligns with global goals of achieving sustainable, efficient and welfare-oriented systems. By harnessing digital connectivity and data, AI offers a strategic framework to meet growing demand while addressing resource limitations. Thus, AI is not merely a technological advancement but a vital tool for enhancing food security, improving farmer livelihoods and promoting responsible livestock production in the future.

The Digital Revolution Reaches the Cowshed

India's livestock sector stands at a historic turning point. With rising population, changing dietary habits and increasing demand for milk, meat and eggs, the pressure on farmers has never been greater. Globally, demand for

Smart dairy farm with sensors and digital monitoring

livestock-derived products is projected to rise by nearly 70% in the coming decades. But how can we increase production without exhausting natural resources, compromising animal welfare or increasing production costs?

The answer may surprise you: **Artificial Intelligence (AI)**.

Once associated only with robots and computers, AI is now entering barns, gaushalas, dairy farms and grazing lands. From smart collars that monitor cows health to drones that track grazing animals, AI is transforming traditional livestock farming into a smart, data-driven enterprise.

What is Artificial Intelligence in Livestock?

Artificial Intelligence refers to computer systems that learn from data, recognize patterns and support decision-making. In livestock farming, AI collects real-time data from sensors, cameras, GPS devices, RFID tags, Rumen boluses, Automated milking machines, feeding robots and wearable technologies to monitor animal health, behaviour, productivity and environment. AI algorithms then analyze the data to provide real-time alerts and recommendations. In simple words, AI acts like a 24-hour digital farm manager.

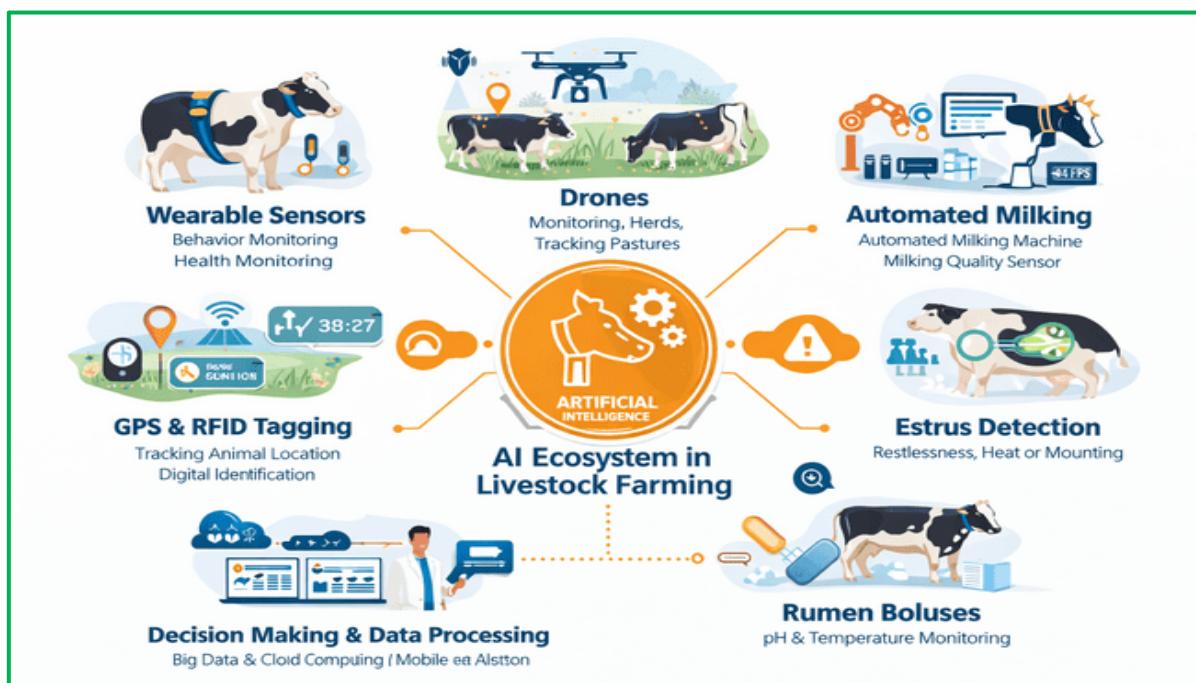
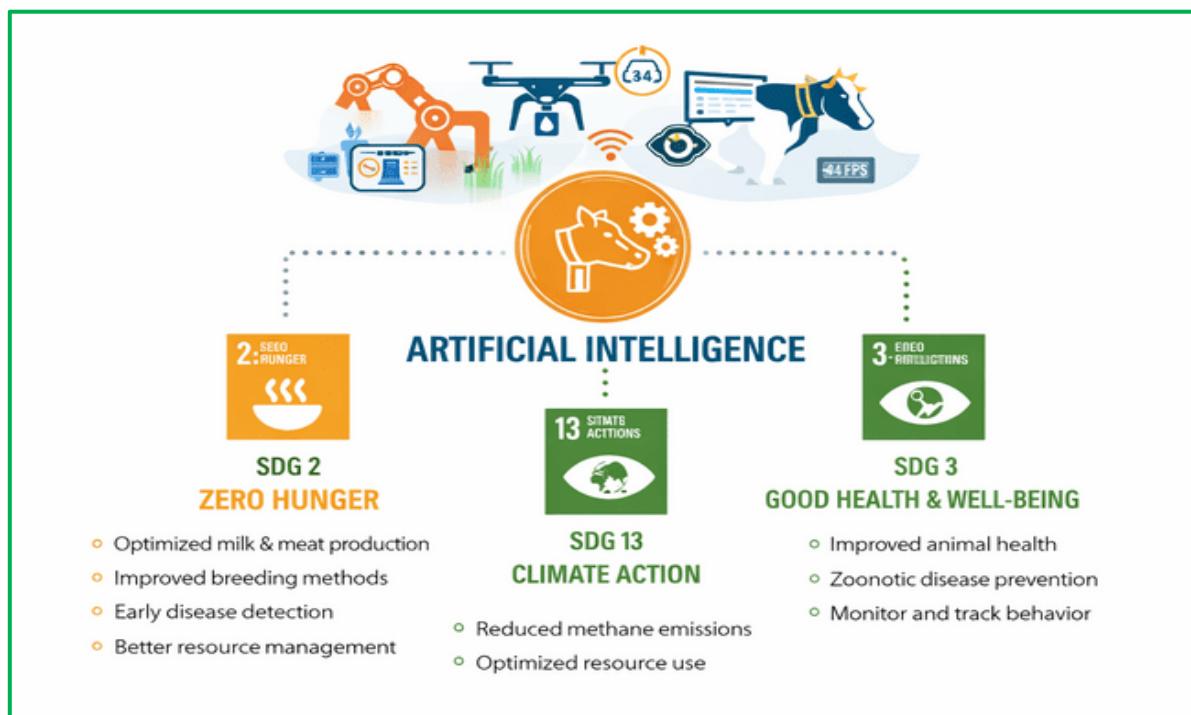


Diagram showing AI ecosystem in livestock farming

Smart Technologies Changing Livestock Farming

Artificial Intelligence is rapidly reshaping modern livestock farming through a range of smart technologies. **Automatic Milking Systems (AMS)** use sensors and robotic arms to milk cows efficiently while monitoring milk quality and detecting mastitis early. **Robotic feeders** dispense balanced rations based on each animal's nutritional needs, reducing feed wastage and improving productivity. **Rumen sensors** track pH and temperature to prevent metabolic disorders, while **estrus detection systems** analyze activity patterns to ensure timely breeding. Additionally, **wearable pedometers and smart collars** monitor movement and health indicators. Together, these technologies reduce labour, increase efficiency and significantly enhance animal welfare and farm profitability.


Robotic milking system in operation

AI and Sustainable Development Goals (SDGs)

Artificial Intelligence in livestock farming is not just a technological upgrade it is a powerful contributor to global sustainability goals. By improving productivity and efficiency, AI directly supports **SDG 2: Zero Hunger**. Smart feeding systems, precision breeding and early disease detection help increase milk and meat production while minimizing losses, ensuring greater food availability for a growing population.

AI also advances **SDG 3: Good Health and Well-being**. Real-time monitoring of animal health through sensors and predictive analytics enables early detection of diseases, including zoonotic infections that can spread from animals to humans. This strengthens biosecurity, improves food safety and protects public health.

In terms of environmental sustainability, AI contributes to **SDG 13: Climate Action**. By optimizing feed efficiency, monitoring methane emissions and reducing resource wastage, precision livestock systems help lower the carbon footprint of dairy and animal production. Thus, AI aligns livestock development with global climate and sustainability commitments.

Infographic linking AI with SDGs

Government Initiatives Supporting AI in Livestock

India's digital transformation is steadily extending to the livestock sector through several forward-looking government initiatives. The **National Artificial Insemination Programme (NAIP)** promotes genetic improvement using digital tracking and reproductive technologies, while the **Rashtriya Gokul Mission** strengthens indigenous breeds through scientific breeding and data recording systems. The **National Digital Livestock Mission (NDLM)** aims to create a comprehensive digital database of livestock, assigning unique identification numbers to animals for health monitoring, traceability and disease control.

Under the **Digital Agriculture Mission (2021–2025)**, advanced technologies such as AI, IoT and data analytics are being integrated into agriculture and allied sectors. The **MAITRI programme** trains rural youth as AI technicians to support farmers at the grassroots level. Meanwhile, **E-Pashu services** provide online access to breeding, vaccination and advisory support. Complementing these efforts, **NITI Aayog's National AI Strategy** promotes responsible AI adoption to enhance productivity, sustainability and farmer income across agriculture and animal husbandry.

Government digital livestock dashboard

Challenges in AI Adoption

Although Artificial Intelligence offers transformative potential for Indian livestock farming, its adoption at the grassroots level remains limited. One major constraint is the **small herd size** of most dairy farmers, who typically own only two to five animals. For them, investing in sensors, software subscriptions and smart devices may appear economically unjustifiable. The **high initial cost** of AI-enabled equipment further discourages adoption, especially when immediate returns are not clearly visible.

Additionally, **limited digital literacy** among rural farmers makes it difficult to operate mobile dashboards and interpret data analytics. In many villages, **poor internet connectivity** restricts real-time data transmission and cloud-based services. The **lack of local technical experts** for installation, maintenance and troubleshooting also reduces farmer confidence. Moreover, farmers often demand **field-level proof and local success stories** before adopting new technologies, preferring practical demonstrations over theoretical promises.

Addressing these challenges is essential for inclusive and sustainable AI integration in Indian livestock systems.

Smallholder dairy farm in rural India

The Future: Smart Precision Livestock Farming

Smart precision livestock farming represents the future of modern animal husbandry by seamlessly integrating advanced digital technologies into everyday farm management. At the core of this system lies the continuous collection of **sensor-generated data**, which is processed through **AI-driven analytics** and presented to farmers via **user-friendly mobile dashboards**. These intelligent platforms generate **automated alerts** and real-time

recommendations, enabling timely and informed decision-making without the need for constant manual observation.

Through smart precision farming, livestock owners can continuously monitor critical performance and health indicators such as **milk yield trends, heat stress levels, disease risk, feed efficiency and reproductive performance**. Early identification of deviations from normal patterns allows prompt intervention, thereby reducing economic losses and improving animal welfare. This approach is particularly beneficial in the Indian context, where smallholder farmers face labour shortages and limited access to veterinary services.

By transforming complex biological and management data into actionable insights, smart precision livestock farming enhances productivity, optimizes resource utilization and supports sustainable dairy and livestock production. Rather than replacing farmers, these technologies empower them with knowledge, making livestock farming more efficient, resilient and future-ready.

Farmer using smartphone app to monitor livestock

Conclusion

Artificial Intelligence represents a transformative force in India's livestock sector. When implemented responsibly and inclusively, AI can enhance productivity, improve animal welfare, reduce environmental impact and strengthen farmer livelihoods. The future of livestock farming lies in smarter systems and data-driven decision-making.

References

1. AlZahal, O., Steele, M. A., Valdes, E. V., McBride, B. W., Kebreab, E., France, J., & Froetschel, M. (2007). Continuous ruminal pH monitoring using wireless sensors. *Journal of Dairy Science*, 90, 273–281.
2. Berckmans, D. (2017). General introduction to precision livestock farming. *Animal Frontiers*, 7(1), 6–11.
3. Berckmans, D. (2017). Precision livestock farming technologies. *Animal Frontiers*, 7(1), 6–11.
4. Berckmans, D. (2017). Precision livestock farming technologies for welfare management. *Animal Frontiers*, 7(1), 28–33.
5. Department of Animal Husbandry & Dairying (DAHD). (2021). *Schemes and Programmes for Livestock Development*. Government of India.

6. Department of Animal Husbandry & Dairying (DAHD). (2022). *Major Schemes of Animal Husbandry*. Government of India.
7. FAO. (2020). *Digital technologies in agriculture and rural areas*. Food and Agriculture Organization of the United Nations, Rome.
8. ICAR. (2021). *Livestock Sector in India: Opportunities and Challenges*. New Delhi.
9. ICAR. (2021). *Precision Livestock Farming in India: Opportunities and Challenges*. New Delhi.
10. ICAR (2019). *Vision 2050: Indian Dairy Sector*. Indian Council of Agricultural Research.
11. Kamaris, A., Kartakoullis, A., & Prenafeta-Boldú, F. X. (2017). A review on the practice of big data analysis in agriculture. *Computers and Electronics in Agriculture*, 143, 23–37.
12. NITI Aayog. (2018). *National Strategy for Artificial Intelligence*. Government of India.
13. Roelofs, J., López-Gatius, F., Hunter, R. H. F., van Eerdenburg, F. J. C. M., & Hanzen, C. (2010). *When is a cow in estrus? Clinical and practical aspects*. *Theriogenology*, 74(3), 327–344.
14. Russell, S., & Norvig, P. (2021). *Artificial Intelligence: A Modern Approach* (4th ed.). Pearson Education, USA.
15. Rutten, C. J., Velthuis, A. G. J., Steeneveld, W., & Hogeveen, H. (2013). Sensors to support health management on dairy farms. *Journal of Dairy Science*, 96(4), 1928–1952.
16. Trotter, M. G., Lamb, D. W., Hinch, G. N., & Guppy, C. N. (2010). GPS tracking of livestock for improved grazing management. *Computers and Electronics in Agriculture*, 74, 135–141.
17. United Nations. (2015). *Transforming our world: The 2030 Agenda for Sustainable Development*.
18. Wathes, C. M., et al. (2008). Precision livestock farming for dairy cows. *Computers and Electronics in Agriculture*, 64, 2–10.
19. World Bank. (2021). *Transforming agriculture through digital technologies*.