

Role of Entomopathogenic Fungi in Pest Management

* Koushik Saha and Madhusudan Sahu

College of Agriculture, OUAT, Bhubaneswar-751003, Odisha, India

* Corresponding Author's email: sahak8452@gmail.com

Entomopathogenic fungi represent a vital class of microbial biological control agents capable of infecting arthropod hosts through direct cutaneous contact, offering a distinct advantage over ingestion-based pathogens. This overview examines the pathogenic mechanisms of EPF—encompassing adhesion, enzymatic penetration, and systemic colonization—and highlights four predominant genera (*Beauveria*, *Metarhizium*, *Lecanicillium*, and *Isaria*) utilized in modern agriculture. The integration of EPF into Integrated Pest Management (IPM) systems is discussed through inundative, inoculative, and conservation strategies, emphasizing their role in managing pesticide resistance, ensuring ecological safety, and facilitating residue-free production. While constraints regarding environmental sensitivity, latency periods, and storage stability persist, EPF remain essential tools for sustainable agriculture. Future efficacy is anticipated to improve through technological advancements in formulation and delivery systems, cementing their position as viable alternatives to broad-spectrum synthetic pesticides.

Introduction

Entomopathogenic fungi (EPF) constitute a specialized class of microbial biological control agents that parasitize arthropod hosts, frequently resulting in mortality or significant physiological impairment. A distinct advantage of EPF, in contrast to bacterial or viral pathogens which typically require ingestion, is their unique ability to initiate infection via direct cutaneous contact and penetration. This contact-based mechanism renders them particularly efficacious against sucking pests (e.g., aphids and whiteflies) and non-feeding developmental stages. EPF have evolved into critical components of sustainable Integrated Pest Management (IPM), facilitating a reduction in reliance on broad-spectrum synthetic pesticides.

Mechanism of Infection (Pathogenesis)

The pathogenicity of EPF involves a complex, multi-stage infection cycle:

Adhesion: The cycle initiates with the attachment of infective conidia to the host epicuticle through hydrophobic and electrostatic interactions.

Germination: Under favourable environmental conditions, the spore produces a germ tube and differentiates into a specialized holdfast structure known as the appressorium.

Penetration: The fungus breaches the host integument through a synergistic combination of mechanical pressure and enzymatic degradation (utilizing chitinases, proteases, and lipases).

Colonization: Upon entering the hemocoel, the fungus transitions to a yeast-like blastospore phase, proliferating rapidly and secreting immunosuppressive metabolites and toxins (e.g., destruxins, beauvericin).

Sporulation: Following host mortality, hyphae re-emerge through the cuticle to produce fresh conidia, thereby facilitating horizontal transmission and potential epizootics within the pest population.

Major Fungal Candidates in Agriculture

Although over 700 species of entomopathogenic fungi have been identified, four genera are predominant in biological control due to their amenability to mass production and broad efficacy:

Genus	Target pests	Characteristics
<i>Beauveria</i>	Coleoptera, Lepidoptera, Hemiptera	Commonly known as "White Muscardine." Characterized by a broad host range, including significant efficacy against beetles and stem borers.
<i>Metarhizium</i>	Soil pests, Orthoptera, Termites	Known as "Green Muscardine." Exhibits high persistence in soil matrices and is the standard for acridid (locust) control.
<i>Lecanicillium</i>	Aphids, Scales, Whiteflies	Known as "White Halo." Optimized for high-humidity environments, such as greenhouse production systems.
<i>Isaria</i>	Whiteflies, Mites, DBM	Notable for controlling pests that exhibit resistance to conventional chemical.

Strategies for Utilization in Pest Management

The application of EPF in pest management is executed through three principal strategies:

- **Inundative Biological Control (Bio-insecticides):** Analogous to chemical pesticide application, this method involves the release of high concentrations of conidia—formulated as wettable powders or oil dispersions - to achieve rapid, immediate pest population reduction. A prime example is the application of *Beauveria bassiana* for the management of the Coffee Berry Borer.
- **Inoculative Biological Control:** This strategy focuses on the release of limited quantities of the pathogen to establish a permanent or semi-permanent population, relying on natural cycling to suppress pests over the growing season.
- **Conservation Biological Control:** This approach involves the modification of agronomic practices—such as minimizing fungicide usage or establishing cover crops—to enhance the survival and efficacy of indigenous fungal populations.

Role in Integrated Pest Management (IPM)

EPF occupy a strategic niche within IPM frameworks, particularly where chemical interventions are unviable:

- **Resistance Management:** Possessing a unique mode of action distinct from neurotoxic chemicals, EPF serve as effective tools for managing populations resistant to synthetic insecticides (e.g., *Plutella xylostella*).
- **Ecological Safety:** Due to high host specificity, EPF pose minimal risk to non-target organisms, including pollinators and natural enemies, thus preserving ecological equilibrium.
- **Residue Management:** EPF applications leave no hazardous chemical residues, ensuring compliance with strict Maximum Residue Limits (MRLs) for export commodities and allowing for a zero-day Pre-Harvest Interval (PHI).

Constraints and Limitations

Despite their benefits, the adoption of EPF is subject to certain limitations:

- **Environmental Sensitivity:** Efficacy is heavily contingent upon abiotic factors, specifically requiring temperatures between 20–30°C and relative humidity exceeding 60–70%.
- **Latent Period:** The time-to-death (3–7 days) is longer compared to the "knockdown" effect of synthetic pyrethroids, which can be perceived as a disadvantage by growers requiring immediate remediation.

- **Storage Stability:** As biological entities, fungal spores possess a shorter shelf-life compared to synthetic chemicals and require controlled storage conditions to maintain viability.

Conclusion

Entomopathogenic fungi are indispensable instruments in the paradigm of sustainable agriculture. While they present challenges regarding environmental dependence and speed of action, their capacity to mitigate pesticide resistance, conserve biodiversity, and ensure food safety underscores their value. Continued advancements in formulation technology, such as UV protectants and improved oil-based delivery systems, are anticipated to mitigate current constraints, cementing the role of EPF in next-generation pest management systems.

References

1. Faria M. and Wraight S P. 2007. Mycoinsecticides and Mycoacaricides: A comprehensive list with worldwide coverage and international classification of formulation types. *Biological Control*, **43**(3), 237–256. <https://doi.org/10.1016/j.biocontrol.2007.08.001>
2. Goettel M S, Koike M, Kim J J, Aiuchi D, Shinya R, and Brodeur J. 2008. Potential of *Lecanicillium* spp. for management of insects, nematodes and plant diseases. *Journal of Invertebrate Pathology*, **98**(3), 256–261. <https://doi.org/10.1016/j.jip.2008.01.009>
3. Jackson M A and Jaronski S T. 2009. Production of microsclerotia of the fungal entomopathogen *Metarhizium anisopliae* and their potential for use as a biocontrol agent for soil-inhabiting insects. *Mycological Research*, **113**(8), 842–850. <https://doi.org/10.1016/j.mycres.2009.03.004>
4. Lacey L A, Grzywacz D, Shapiro-Ilan D I, Frutos R, Brownbridge M, and Goettel M S. 2015. Insect pathogens as biological control agents: Back to the future. *Journal of Invertebrate Pathology*, **132**, 1–41. <https://doi.org/10.1016/j.jip.2015.07.009>
5. Shah P A and Pell J K. 2003. Entomopathogenic fungi as biological control agents. *Applied Microbiology and Biotechnology*, **61**(5), 413–423. <https://doi.org/10.1007/s00253-003-1240-8>
6. St. Leger R J and Wang C. 2010. Genetic engineering of fungal biocontrol agents to achieve greater efficacy against insect pests. *Applied Microbiology and Biotechnology*, **85**(4), 901–907. <https://doi.org/10.1007/s00253-009-2306>
7. Zimmermann G. 2007. Review on safety of the entomopathogenic fungi *Beauveria bassiana*. *Biocontrol Science and Technology*, **17**(6), 553–596. <https://doi.org/10.1080/09583150701462100>
8. Zimmermann, G. 2007. Review on safety of the entomopathogenic fungus *Metarhizium anisopliae*. *Biocontrol Science and Technology*, **17**(9), 879–920. <https://doi.org/10.1080/09583150701593963>