

Integrated Pest Management: An Update on the Sustainability

Approach to Crop Protection

*Sajan Mahankud¹ and Dipankar Mandal²

¹M.Sc. Scholar, Department of Plant Pathology, College of Agriculture, OUAT, Bhubaneswar, Odisha, India – 751003

²Scientist (Plant Pathology), RRTTS, OUAT, Chiplima, Odisha, India – 768026

*Corresponding Author's email: ksaajan564@gmail.com

Integrated Pest Management (IPM) emerged as a pest control framework promoting sustainable intensification of agriculture, by adopting a combined strategy to reduce reliance on chemical pesticides while improving crop productivity and ecosystem health. This critical review synthesizes the most recent advances in IPM research and practice, mostly focusing on studies published within the past five years. The Review discusses the key components of IPM, including cultural practices, biological control, genetic pest control, and targeted pesticide application, with a particular emphasis on the significant advancements made in biological control and targeted pesticide delivery systems. Recent findings highlight the growing importance of genetic control and conservation biological control, which involves the management of agricultural landscapes to promote natural enemy populations. Furthermore, the recent discovery of novel biopesticides, including microbial agents and plant-derived compounds, has expanded the arsenal of tools available for eco-friendly pest management. Substantial progress has recently also been made in the development of targeted pesticide delivery systems, such as nanoemulsions and controlled-release formulations, which can minimize the environmental impact of pesticides while maintaining their efficacy. The Review also analyzes the environmental, economic, and social dimensions of IPM adoption, showcasing its potential to promote biodiversity conservation and ensure food safety. Case studies from various agroecological contexts demonstrate the successful implementation of IPM programs, highlighting the importance of participatory approaches and effective knowledge exchange among stakeholders.

Keywords: IPM, Components of IPM, Methods of IPM, Benefits of IPM

Introduction

Integrated Pest Management (IPM) emerged as a pest control framework promoting sustainable intensification of agriculture, by adopting a combined strategy to reduce reliance on chemical pesticides while improving crop productivity and ecosystem health. This critical review synthesizes the most recent advances in IPM research and practice, mostly focusing on studies published within the past five years. The Review discusses the key components of IPM, including cultural practices, biological control, genetic pest control, and targeted pesticide application, with a particular emphasis on the significant advancements made in biological control and targeted pesticide delivery systems. Recent findings highlight the growing importance of genetic control and conservation biological control, which involves the management of agricultural landscapes to promote natural enemy populations. Furthermore, the recent discovery of novel biopesticides, including microbial agents and plant-derived compounds, has expanded the arsenal of tools available for eco-friendly pest management. Substantial progress has recently also been made in the development of

targeted pesticide delivery systems, such as nanoemulsions and controlled-release formulations.

Components of IPM

The key components of an IPM program, which is a thorough approach to managing pests in an environmentally and economically sustainable manner. As shown in the figure, IPM relies upon a blend of strategies, including prevention and cultural control methods, monitoring and decision-making tools, biological control, and chemical control. Prevention and cultural control methods involve methods such as sanitation, crop rotation, intercropping, and the utilization of resistant varieties to create conditions that are less favorable for pest populations to develop. Monitoring and decision-making tools (i.e., economic injury levels, action thresholds, scouting, and sampling techniques) help farmers to assess pest populations and determine when intervention is necessary. Biological control methods, including the employment of natural enemies, conservation and augmentation of beneficial insects, genetic control, and classical biological control (CBC), harness the power of predators/parasites to keep pest populations in check. Lastly, chemical inactivation methods, including biopesticides, selective/targeted pesticide utilization, and nanotechnology, are used judiciously to control pests when other methods are inadequate. By integrating these diverse strategies, IPM can successfully manage pests by shrinking risks to public health and the environment.

A. Biological Method

In Integrated Pest Management (IPM), the biological method involves using natural enemies—predators, parasitoids, and pathogens—to control pests and diseases. This approach minimizes environmental risks and the development of pesticide resistance.

Types of Biological Control Agents and Disease Examples

Biological control agents are specific to target pests and can be used to manage both insect infestations and plant diseases.

1. Predators

Predators are free-living organisms that consume multiple prey during their lifetime. Agents: Ladybird beetles, lacewings, predatory mites, spiders, and some birds.

Target Pests:

Aphids: Ladybird beetles (ladybugs) and lacewings are commonly used to manage aphid populations. Spider mites and Thrips: Predatory mites are effective against these pests.

2. Parasitoids

Parasitoids are organisms (usually wasps or flies) that lay their eggs in or on a host's body. The larvae then develop inside the host, eventually killing it.

Agents: Various species of parasitic wasps (Trichogramma spp., Aphidius spp.) and tachinid flies. Target Pests:

Caterpillars: Trichogramma wasps are used as egg parasitoids against various caterpillar species, including the cotton bollworm (*Helicoverpa armigera*).

Whiteflies: The wasp *Encarsia formosa* is a well-known parasitoid for controlling whiteflies, especially in greenhouses.

Aphids: *Aphidius* species are effective parasites of aphids.

3. Pathogens (Biopesticides)

Pathogens are disease-causing microorganisms, such as bacteria, fungi, and viruses, that infect and kill pests. These are often applied as "biopesticides".

Agents:

Bacteria: *Bacillus thuringiensis* (Bt) and *Bacillus subtilis* are common examples. Fungi: *Beauveria bassiana* and *Trichoderma* species.

Viruses: Nuclear polyhedrosis viruses (NPVs).

Nematodes: Beneficial nematodes (*Phasmarhabditis hermaphrodita*, *Steinernema* spp.)

B. Chemical Method

In Integrated Pest Management (IPM), the chemical method (pesticides, fungicides, bactericides, etc.) is the last resort, used only when all other methods fail to keep the pest population below an economically damaging threshold. The approach emphasizes selective, need-based application to minimize environmental harm, human health risks, and the development of pest resistance.

Role of Chemical Methods in IPM

The primary principles guiding the use of chemicals in an IPM program are:

Last Resort: Pesticides are only applied after monitoring indicates they are absolutely necessary to prevent significant economic loss.

Selectivity: Preference is given to selective pesticides that target only the harmful pest, sparing beneficial insects (natural predators, pollinators, etc.) and other non-target organisms.

Judicious Use: Application is precisely timed and targeted (e.g., spot treatment rather than entire fields) to maximize effectiveness and reduce the overall quantity used.

Minimizing Risk: Products and application methods are chosen to minimize risks to human health and the environment, focusing on proper handling and application techniques.

C. Physical Method

Barriers and Exclusion: Using physical screens, netting, or row covers to prevent pests from accessing plants or entering a building. This is a key preventative measure.

Temperature Manipulation: Using heat or cold to control pests. Examples include:

Soil solarization: Heating the soil using sunlight trapped under plastic sheeting to kill soil-borne pathogens, weed seeds, and pests.

Steam sterilization: Using high-temperature steam to disinfect soil, compost, or equipment.

Cold storage: Storing fruits and vegetables at low temperatures to kill pests like fruit fly maggots or control potato tuber moths.

Traps: Using devices like pheromone traps, sticky traps (e.g., yellow sticky cards), or light traps to monitor, mass-trap, or kill pests.

Hand-picking/Manual Removal: Directly removing pests, egg masses, or diseased plant parts by hand and destroying them.

Water Sprays: Using a strong stream of water to dislodge pests like aphids or spider mites from sturdy plants.

Tillage/Cultivation: Plowing or tilling the soil to disrupt the life cycle of soil-inhabiting pests and diseases, exposing them to predators or harsh weather conditions.

D. Cultural Method

These are preventative strategies that modify the environment or host to reduce pest and disease establishment, reproduction, dispersal, and survival.

Examples of Cultural Methods for Disease/Pest Control:

Crop Rotation: Planting different, non-host crops in sequence (e.g., rotating cereals with legumes) disrupts pest/disease life cycles, preventing buildup in the soil, beneficial for controlling soil-borne fungi like Fusarium.

Resistant Varieties: Choosing seeds of naturally resistant or tolerant plant types (e.g., disease-resistant wheat) prevents infection, reducing need for fungicides.

Planting/Harvesting Times: Adjusting sowing or harvesting dates to escape peak pest/disease periods (e.g., early potato planting to avoid late blight).

Sanitation: Removing crop debris, weeds, and infected plants (e.g., burning stubble) eliminates overwintering sites for pathogens and pests.

Tillage: Deep plowing can bury pests or expose them to predators, while minimum tillage can promote beneficial soil life, controlling diseases.

Water Management: Proper irrigation and drainage to avoid waterlogged soil, which promotes root rots (like Phytophthora) and fungal growth.

Intercropping/Trap Cropping: Planting a sacrificial crop (trap crop) or mixing crops to confuse pests or attract them away from the main crop.

Example Disease: Rice Blast (Fungus)

Cultural IPM: Use blast-resistant rice varieties, rotate with non-host crops, manage nitrogen fertilizer to avoid lush, susceptible growth, and use proper water management (alternating wet/dry periods) to reduce fungal favorable conditions, all alongside monitoring for early fungicide application if needed.

Sustainability Benefits of IPM

By prioritizing nonchemical methods and judicious pesticide application based on economic thresholds and pest monitoring, IPM seeks to maintain pest populaces below economically damaging levels while minimizing reliance on chemical interventions. This approach can not only reduce the total volume of pesticides applied but also promote the employment of more selective and benign compounds, mitigating the detrimental influences on nontarget organisms, ecosystems, and human health. IPM employs a combined approach, mixing cultural, biological, and physical control tactics, complemented by the strategic application of reduced-risk pesticides (i.e., biopesticides and naturally derived products). These alternatives, including microbial insecticides, botanical extracts, and semiochemicals, exhibit lower toxicity, shorter persistence, and fewer nontarget effects compared to typical synthetic pesticides. Their incorporation into IPM programs can advance the overall sustainability of crop protection approaches by reducing environmental contamination risks, protecting natural enemies and wildlife, and promoting ecosystem resilience.

Conclusion

IPM emerged as a promising and sustainable paradigm for crop protection, offering a viable alternative to the excessive and indiscriminate application of chemical pesticides. By synergistically integrating a wide range of preventative, biological, cultural, and chemical control strategies, IPM seeks to keep pest populations below economically damaging thresholds while mitigating risks to public health and the environment. The embracing of IPM practices has been demonstrated to yield multiple benefits, including lowered pesticide use and associated risks, improved crop yields and quality, enhanced biodiversity, and increased profitability and resilience of some farming systems. However, despite the well-documented advantages of IPM, its widespread adoption and scaling have been hindered by various technical, economic, institutional, and social barriers. These barriers include the complexity and knowledge-intensive nature of IPM, the high initial costs and perceived risks of adoption, the lack of supportive policies and market incentives, and the limited awareness and participation of farmers and other stakeholders in the design and implementation of IPM programs. Overcoming these barriers requires a holistic and integrated approach that addresses the multiple dimensions of IPM adoption, and governance from the construction of locally adapted and cost-effective IPM strategies to the creation of enabling environments and value chains and regulations that support the scaling and agricultural-sustainability of IPM. A pioneer and successful approach for systematically and upscale implementation of IPM is the use of the Pilot Unit strategy that can be promoted as a starting point and adapted to a range of crops.

References

1. Angon, P. B.; Mondal, S.; Jahan, I.; Datto, M.; Antu, U. B.; Ayshi, F. J.; Islam, M. S. - Integrated pest management (IPM) in agriculture and its role in maintaining ecological balance and biodiversity. *Advances in Agriculture* **2023**, *2023* (1), 5546373 DOI: 10.1155/2023/5546373
2. Rossi, V.; Caffi, T.; Salotti, I.; Fedele, G. Sharing decision-making tools for pest management may foster implementation of Integrated Pest Management. *Food Security* **2023**, *15* (6), 1459–1474, DOI: 10.1007/s12571-023-01402
3. Deguine, J.-P.; Aubertot, J.-N.; Flor, R. J.; Lescourret, F.; Wyckhuys, K. A.; Ratnadass, A. Integrated pest management: good intentions, hard realities. A review. *Agronomy for Sustainable Development* **2021**, *41* (3), 38, DOI: 10.1007/s13593-021-00689-w