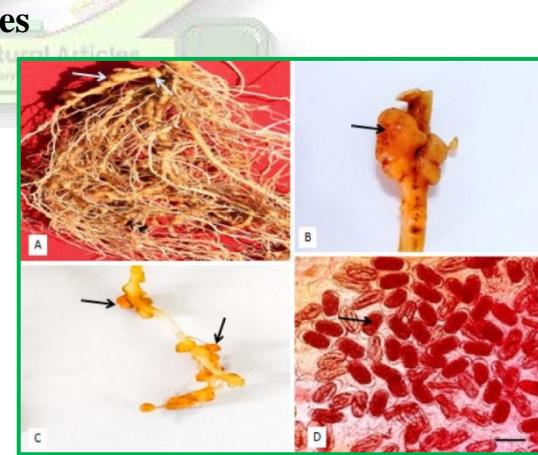


The Green Revolution Underfoot: The Shift from Chemical to Biological Nematode Control

*Abinandhan S and Vijay R

Odisha University of Agriculture and Technology, Bhubaneswar – 751003, India

*Corresponding Author's email: abinandhankumar2045@gmail.com


The article traces the evolution from chemical nematicides, which propelled Green Revolution yields but led to soil degradation, health crises from toxins like DBCP, and global bans, toward biological controls using fungi such as *Pochonia chlamydosporia* and bacteria like *Bacillus* spp. that parasitize nematodes with 70-90% efficacy and minimal environmental harm. It highlights nematodes' devastation—e.g., *Meloidogyne javanica* causing 90% eggplant losses in India—key mechanisms including egg hyphal invasion and induced systemic resistance, plus field trials matching chemicals at 85% suppression via IPM and formulations like microencapsulation. Advances in nanotechnology, multi-omics strains, and subsidies cut costs to ₹1,800-2,700/ha while overcoming 40-70% performance gaps, with genomics/CRISPR poised for 90% control by 2030 to ensure sustainable food security.

Introduction

Plant-parasitic nematodes represent one of the most important threats to global agriculture, causing annual crop losses exceeding \$157 billion by targeting plant root systems and collapsing essential nutrient and water uptake processes. The Green Revolution of the mid-20th century dramatically increased yields through chemical nematicides and high-yielding varieties, but this success came at the cost of soil degradation, biodiversity loss, and human health risks from persistent toxins. Today, a paradigm transfer toward biological controls—fungi, bacteria, and other natural antagonists—is underway, promising sustainable nematode management practices that aligns with eco-friendly farming goals. This transition, often called the "underfoot revolution," improves soil microbiomes to protect crops without the environmental fallout of synthetic chemicals.

Historical Context of Nematode Challenges

Nematodes have plagued agriculture since early times, but their impact increased with intensive monocropping during the Green Revolution era of the 1960s-1980s. Species like root-knot nematodes (*Meloidogyne* spp.) and cyst nematodes (*Heterodera* spp.) invade root tips, inducing specialized feeding cells that divert plant resources, leading to stunted growth, chlorosis, and yield declines of 20-50% in staples like potatoes, tomatoes, and soybeans. In tropical regions such as India, where eggplant and okra dominate smallholder farms, *Meloidogyne javanica* alone can wipe out 90% of harvests under high infestation pressure.

Images illustrating typical disease symptoms caused by root-knot nematodes
(A) Root galls on the root system of eggplants infected by *M. javanica*. (B) Close-up of the root galls. (C) Egg masses on roots. Scale bar = 10 mm. (D) Eggs of *M. javanica*. Scale bar = 50 µm. (Source: Parveen et al., 2025)

Early detection proved challenging due to subsurface damage, mimicking nutrient deficiencies or drought, which delayed interventions and amplified losses. By the 1970s, global surveys revealed nematodes rivaling insects as yield suppressors, prompting massive chemical deployments that mirrored fertilizer and pesticide booms. However, over-reliance exposed vulnerabilities like resistant strains emerged, and non-target effects collapsed beneficial soil life, setting the stage for biological alternatives. The economic toll in developing nations like India underscores urgency; nematode-induced losses in vegetables exceed millions of tons yearly, threatening food security for billions. This historical backdrop illustrates why the shift from chemicals to biology isn't merely preferable—it's imperative for resilient agroecosystems.

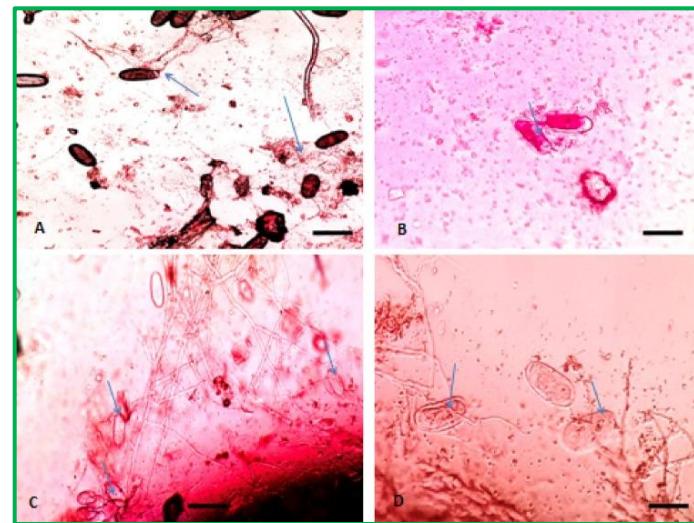
Dominance and Downfall of Chemical Nematicides

Chemical nematicides burst onto the scene post-World War II, with fumigants like ethylene dibromide (EDB) and dibromochloropropane (DBCP) revolutionizing control by gassing soils to kill eggs, juveniles, and adults. These volatile compounds penetrated deep into soil profiles, achieving 90-100% mortality in field trials and enabling the Green Revolution's yield doublings in nematode-prone crops. Non-fumigants such as aldicarb and oxamyl followed, offering systemic action via root uptake, which paralyzed nematodes through acetylcholinesterase inhibition. Initial triumphs were undeniable as in cotton and tobacco belts, applications reduced the gall indices to half, boosting profits and food supplies amid population surges. Yet, cracks appeared swiftly; DBCP's groundwater leaching caused sterility epidemics in farmworkers by 1977, triggering U.S. EPA bans and global recalls. Persistence in soils—half-lives exceeding years—led to bioaccumulation in food chains, while runoff contaminated aquifers, violating modern safety thresholds.

Regulatory waves intensified as the EU phased out carbamates by 2020, India restricted imports amid residue scandals, and resistance built in *Meloidogyne* populations exposed to sublethal doses. Economically, soaring prices and scarcity post-bans left farmers vulnerable, with alternatives like fluensulfone emerging but facing similar scrutiny for toxicity. This downfall catalyzed the biological pivot, as chemicals' short-term gains proved ecologically bankrupt.

Emergence of Biological Control Strategies

Biological nematode control harnesses natural enemies—predominantly fungi and bacteria—that parasitize, trap, or toxin-kill nematodes without synthetic residues. Pioneering work in the 1980s identified egg-parasitic fungi like *Pochonia chlamydosporia*, which infects *Meloidogyne* eggs via appresoria formation and hyphal invasion, slashing hatch rates by 60%+. Bacteria such as *Bacillus* spp. complement this by secreting chitinases, proteases, and volatile organic compounds (VOCs) like hydrogen cyanide, lysing cuticles and achieving 80-95% juvenile mortality.


These agents thrive in the rhizosphere, colonizing roots to outcompete nematodes while eliciting induced systemic resistance (ISR) through jasmonic acid pathways. Unlike chemicals' broad-spectrum kill, biologicals selectively target pests, preserving earthworms and pollinators essential for soil health. Formulation advances—granules, wettable powders at 10^6 - 10^9 CFU/g—enhance shelf-life and delivery, mimicking nematicide ease. Integration with cultural practices amplifies efficacy, as organic mulches boost fungal sporulation, while cover crops harbor bacterial reservoirs. This multifaceted approach restores soil suppressiveness, reducing nematode densities over seasons rather than one-off kills. Globally, adoption in Brazil's soybean fields demonstrates viability, cutting chemical use by 70%.

Spotlight on Key Biocontrol Agents

Pochonia chlamydosporia stands as a flagship fungus, with isolate 102 parasitizing up to 70% of sedentary nematode eggs by degrading eggshell proteins and inducing fungal gene expression. In eggplant trials, soil drenches at 2×10^5 spores/mL yielded 41-62% J2 mortality within 48 hours, alongside 48% root weight gains and 32% height increases in infested

plants. Its chlamydospores ensure long-term persistence, suppressing *Meloidogyne javanica* for 24 months when paired with compost.

Bacillus subtilis and *B. firmus* excel via dual modes: enzyme cocktails dissolve cuticles, while biofilms shield roots and VOCs like 2,4-xylenol repel invaders. Strain GB-126 reduced *Rotylenchulus reniformis* in cotton by 75%, boosting yields 25% through growth promotion. *Pasteuria penetrans* offers end-game control, encapsulating juveniles to sterilize females in cyst nematodes, with perennial efficacy in peanuts. Predatory fungi like *Arthrobotrys oligospora* form constricting rings to snare mobile stages, while *Trichoderma harzianum* enzymatically shreds cysts. *Purpureocillium lilacinum* targets eggs globally, achieving 55% reductions in tomatoes. These agents specificity minimizes resistance risks, unlike chemicals overuse pitfalls.

Eggs and J2 of *Meloidogyne javanica* colonized by *Pochonia chlamydosporia*. Scale bars = 50 μ m. (Source: Parveen et al., 2025)

Real-world validations confirm biologicals' parity with chemicals: in tomato plots, bionematicide Taglis curbed *Meloidogyne incognita* by 85%, rivaling Nemacab's 94% without yield gaps over two seasons. Eggplant field studies (100m²) with *P. chlamydosporia* plus neem cake slashed galls 63% and cysts 55%, sustaining effects via bioassays. Multi-year trials in India showed *Bacillus* consortia enhancing chlorophyll 29% and suppressing populations 70% under organic amendments.

Field Trials and Performance Metrics

Metrics like reproduction factor ($R_f < 1.0$) and gall index (0-5 scale) favor integrates: chemicals hit $R_f=0.2$ short-term but rebound, while biologicals stabilize at 0.5-0.8 long-term. Greenhouse data mirrors fields—*P. chlamydosporia* at high doses cut egg masses 42%, boosting harvests 35%. Cost-benefit analyses reveal savings like that biologicals at \$20-30/ha vs. chemicals' \$50+, with added soil health premiums. Challenges persist—UV lability and temperature optima—but encapsulation in alginate beads boosts survival 50%, matching fluopyram in persistence. Omics tools dissect mechanisms: proteomics flags Cry-like toxins in *Bacillus*, genomics maps *Pochonia*'s 41Mb virulence arsenal.

Modern biocontrol hinges on delivery innovations like microencapsulation shields spores from desiccation, extending viability to 12 months at ambient storage. Seed coatings with *Bacillus* embed 10^8 CFU/seed, ensuring early rhizosphere dominance and 65% J2 reductions pre-emergence. Drip irrigation deploys liquid inocula precisely, minimizing drift unlike fumigant volatilization. Nanotechnology emerges as chitosan nanoparticles load fungal enzymes, penetrating cysts 40% better than free cells. Organic matrices—vermicompost, chitosan—enhance adhesion, with *P. chlamydosporia* formulations hitting 80% egg parasitism in sands. Regulatory nods accelerate: India's CIBRC approved 20+ BCAs by 2025, easing farmer access. These tweaks bridge lab-to-farm gaps, delivering chemical-like consistency while nurturing microbiomes for holistic pest suppression.

Advances in Formulation and Delivery

Modern biocontrol hinges on delivery innovations like microencapsulation shields spores from desiccation, extending viability to 12 months at ambient storage. Seed coatings with *Bacillus* embed 10^8 CFU/seed, ensuring early rhizosphere dominance and 65% J2 reductions pre-emergence. Drip irrigation deploys liquid inocula precisely, minimizing drift unlike fumigant volatilization. Nanotechnology emerges as chitosan nanoparticles load fungal enzymes, penetrating cysts 40% better than free cells. Organic matrices—vermicompost, chitosan—enhance adhesion, with *P. chlamydosporia* formulations hitting 80% egg parasitism in sands. Regulatory nods accelerate: India's CIBRC approved 20+ BCAs by 2025, easing farmer access. These tweaks bridge lab-to-farm gaps, delivering chemical-like consistency while nurturing microbiomes for holistic pest suppression.

Challenges and Solutions in Adoption

Biocontrol adoption for nematode management faces hurdles like inconsistent field performance (40-70% efficacy vs. chemicals' 90%), due to abiotic stresses (UV, temperature, pH, moisture) and poor shelf-life losing 50-70% potency quickly. Solutions include multi-

omics strain selection for robust isolates like UV-tolerant *Pochonia chlamydosporia* mutants retaining 80% infectivity, plus farmer education via demos achieving 60% uptake with 35-50% gall reductions in eggplant to dispel inferiority myths. Economics favor scale—bulk production cuts costs 50% (₹4,500-9,000/ha to ₹1,800-2,700/ha at 90 INR/USD), with EU/India subsidies (30-50%) and FAO-harmonized regulations fast-tracking 25+ BCAs in India by 2025; IPM embeds BCAs with rotations to slash inputs 50%, aided by digital apps for equitable adoption.

Integrating into Modern IPM Frameworks

IPM synthesizes biologicals with host resistance, rotations, and monitoring for threshold-based action. Resistant eggplant varieties (e.g., EC-2) pair with *Pochonia*, reducing *Meloidogyne* 75% synergistically. Soil solarization primes microbiomes for fungal dominance, amplifying suppressiveness. Digital tools—nematode apps, PCR diagnostics—guide applications, optimizing timings for 20-30% gains. Global successes: Brazil's soy IPM with *Pasteuria* saves \$1B yearly; India's OUAT programs extend to spices. This integration heralds enduring yields sans chemicals.

Future Prospects and Policy Imperatives

Genomics unlocks elite strains like CRISPR-edited *Pochonia* overexpresses adhesins, promising 90% efficacy. Synthetic biology crafts chimeric BCAs blending *Bacillus* toxins with fungal parasitism. Climate-resilient formulations target warming soils, vital for tropics. Policies must prioritize as it subsidies mirroring Green Revolution fertilizers, R&D funding like USAID's \$50M pushes. By 2030, biologicals could reclaim 30% chemical markets, fortifying food systems. This underfoot revolution ensures agriculture's green legacy endures.

Conclusion

The shift from chemical nematicides to biological controls marks a profound "underfoot revolution" in agriculture, transforming soil microbiomes into active allies against nematodes while sidestepping the environmental devastation and health risks of synthetic toxins that once fueled the Green Revolution. Agents like *Pochonia chlamydosporia* and *Bacillus* spp., bolstered by formulation advances, multi-omics strain optimization, and IPM integration, now deliver 70-90% efficacy rivaling chemicals, slashing costs through scale (₹1,800-2,700/ha) and regulatory support, ensuring resilient yields for smallholders in India and beyond. As genomics, nanotechnology, and policy imperatives propel this transition—targeting 30% market reclamation by 2030—sustainable nematode management secures global food systems, honoring the Green Revolution's legacy with ecological stewardship for generations ahead.

References

1. Adam, M. (2023). Evaluation of bionematicides and chemical nematicides in the management of root-knot nematode, *Meloidogyne incognita* infecting tomato. *International Journal of Plant & Soil Science*, 35(13), 1-11. <https://doi.org/10.9734/ijpss/2023/v35i134814>
2. Ayaz, M., Zhao, J.-T., Zhao, W., Chi, Y.-K., Ali, Q., Ali, F., Khan, A. R., Yu, Q., Yu, J.-W., Wu, W.-C., Qi, R.-D., & Huang, W.-K. (2024). Biocontrol of plant parasitic nematodes by bacteria and fungi: A multi-omics approach for the exploration of novel nematicides in sustainable agriculture. *Frontiers in Microbiology*, 15, Article 1433716. <https://doi.org/10.3389/fmicb.2024.1433716>
3. Manzanilla-López, R. H., Esteves, I., & Evard, P. J. (2013). *Pochonia chlamydosporia*: Advances and challenges to improve its performance as a biological control agent of sedentary endo-parasitic nematodes. *European Journal of Plant Pathology*, 136(1), 1-17. <https://doi.org/10.1007/s10658-013-0174-1>
4. Parveen, A., Tanaka, K., & Khan, M. (2025). Biocontrol efficacy of *Pochonia chlamydosporia* against root-knot nematode *Meloidogyne javanica* in eggplant and its

impact on plant growth. *Scientific reports*, 15(1), 36990. <https://doi.org/10.1038/s41598-025-99527-2>

5. Parveen, A., Tanaka, K., Khan, M., & Khan, M. (2025). Biocontrol efficacy of *Pochonia chlamydosporia* against root-knot nematode *Meloidogyne javanica* in eggplant and its impact on plant growth. *Scientific Reports*, 15(1), Article 36990. <https://doi.org/10.1038/s41598-025-99527-2>

6. Timper, P. (2014). Conserving and enhancing biological control of nematodes. *Journal of Nematology*, 46(1), 75–89. <https://pmc.ncbi.nlm.nih.gov/articles/PMC4077175/>