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ystemin represents a paradigm shift in plant hormone research, identified in 1991 by

Clarence A. Ryan's team at Washington State University as the first known extracellular
peptide signal in plants.[1] Isolated from tomato leaves wounded by insects, this 18-amino-
acid polypeptide (Alal-Vall8) rapidly translocates via phloem to distant tissues, activating
jasmonic acid (JA)-dependent defenses within minutes—far faster than classical
phytohormones like auxins or gibberellins.[2] Its significance lies in enabling systemic
acquired resistance (SAR) without broad-spectrum pesticides, crucial for sustainable
agriculture amid rising pest resistance and climate volatility. In India, where tomato
production faces 20-30% losses from Lepidoptera and salinity, systemin offers biopesticide
potential for protected cultivation, aligning with natural farming initiatives and reducing
chemical residues in Rajasthan's arid polyhouses.[3][4]

Molecular Structure & Biosynthesis

Systemin's structure features a Cys3-Cysl7 disulfide bond stabilizing its a-helical
conformation for receptor binding, encoded by the nuclear prosystemin gene (200 amino
acids, ~18 kbDa).[2][5] Biosynthesis occurs in vascular parenchyma post-wounding:
jasmonate induces prosystemin transcription, followed by proteolytic processing by
subtilisin-like proteases (Prosystemin Processing Enzyme 1, PPEL) releasing mature
systemin.[6] Prosystemin harbors additional bioactive fragments: PS1-70 and PS1-120
peptides trigger JA-independent defenses, including threonine deaminase (TD) against amino
acid-consuming herbivores and chitinases against Botrytis cinerea.[5] This multifunctional
precursor expands systemin's role beyond signaling to direct antimicrobial activity.

Biotic Defense Role

Systemin initiates the wound-JA cascade by binding leucine-rich repeat receptor-like kinase
SR160 (SYR1), causing plasma membrane depolarization, cytosolic Ca?" influx, and
activation of phospholipase A2 (PLA2).[2] This releases linolenic acid for octadecanoid
pathway, yielding JA-lle, which activates MY C2 transcription factors upregulating proteinase
inhibitors (PI-1, PI-I1, LapA) that inhibit trypsin/chymotrypsin in Spodoptera littoralis guts,
reducing larval weight gain by 40-60%.[3][6] Indirect defenses include volatile terpenoids
(e.g., (E)-p-ocimene) attracting parasitoids like Cotesia marginiventris.[7] Against
necrotrophs, systemin synergizes with ethylene for PR genes, curbing B. cinerea lesion
expansion by 70% in treated leaves.[5]

Direct (PIs) Gut enzyme inhibition S. littoralis 50% reduced feeding
Indirect (Volatiles) Parasitoid recruitment Noctuids 3x predator attraction
Antifungal Chitinase/PR upregulation B. cinerea 70% lesion reduction
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Abiotic Stress Tolerance

Systemin bolsters salt tolerance in tomatoes by upregulating SOS1 (plasma membrane Na*/H*
antiporter), NHX2 (vacuolar exchanger), and HKTI1;2 (Na* unloader), reducing Na*
accumulation by 35% under 150 mM NacCl.[4] It elevates proline, SOD, CAT antioxidants, and
aquaporins for drought resilience, mimicking ABA effects without growth penalties.[4][8] For
Rajasthan's sodic soils (pH 8.5+, EC 4-8 dS/m), picomolar foliar sprays improve fruit yield by
25% under salinity, via crosstalk with MAPK cascades amplifying stress genes.[4]

Plant-to-Plant Communication

Systemin volatiles prime neighboring untreated plants for faster JA responses, enhancing Pl
accumulation by 2-fold upon subsequent attack—a "talking plants” phenomenon via air-borne
cues.[7][9] This kin recognition boosts community-level resistance in dense tomato fields.

Practical Applications in Protected Cultivation

Formulate as 10 nM chitosan nanoparticles for foliar/soil drench (1-5 pmol/plant, weekly),
integrating with neem IPM: systemin reduces Helicoverpa damage by 55% while boosting Brix
15%.[3][10] In hydroponics, combine with LED lighting for 20% vyield gains under aphid
pressure.

Recent Advances

2025 discovery of antiSys peptide antagonizes SYR1 without signaling, preventing
autoimmunity.[11] Prosystemin fragments (PS1-70) show broad-spectrum activity, prompting
commercial prototypes like SysPep® biopesticides.[5]

Future Perspectives

CRISPR-Cas9 prosystemin overexpression promises multi-stress cultivars; peptide mimetics
evade degradation for longer efficacy.[12] Al-optimized delivery via drones targets Rajasthan
polyhouses, enabling precision natural farming by 2030.

Conclusion

Systemin's journey from obscure peptide to agronomic powerhouse underscores peptide
hormones' untapped potential, fostering resilient, eco-friendly tomato production amid climate
challenges.
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