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ystemin represents a paradigm shift in plant hormone research, identified in 1991 by 

Clarence A. Ryan's team at Washington State University as the first known extracellular 

peptide signal in plants.[1] Isolated from tomato leaves wounded by insects, this 18-amino-

acid polypeptide (Ala1-Val18) rapidly translocates via phloem to distant tissues, activating 

jasmonic acid (JA)-dependent defenses within minutes—far faster than classical 

phytohormones like auxins or gibberellins.[2] Its significance lies in enabling systemic 

acquired resistance (SAR) without broad-spectrum pesticides, crucial for sustainable 

agriculture amid rising pest resistance and climate volatility. In India, where tomato 

production faces 20-30% losses from Lepidoptera and salinity, systemin offers biopesticide 

potential for protected cultivation, aligning with natural farming initiatives and reducing 

chemical residues in Rajasthan's arid polyhouses.[3][4] 

Molecular Structure & Biosynthesis 
Systemin's structure features a Cys3-Cys17 disulfide bond stabilizing its α-helical 

conformation for receptor binding, encoded by the nuclear prosystemin gene (200 amino 

acids, ~18 kDa).[2][5] Biosynthesis occurs in vascular parenchyma post-wounding: 

jasmonate induces prosystemin transcription, followed by proteolytic processing by 

subtilisin-like proteases (Prosystemin Processing Enzyme 1, PPE1) releasing mature 

systemin.[6] Prosystemin harbors additional bioactive fragments: PS1-70 and PS1-120 

peptides trigger JA-independent defenses, including threonine deaminase (TD) against amino 

acid-consuming herbivores and chitinases against Botrytis cinerea.[5] This multifunctional 

precursor expands systemin's role beyond signaling to direct antimicrobial activity. 

Biotic Defense Role 
Systemin initiates the wound-JA cascade by binding leucine-rich repeat receptor-like kinase 

SR160 (SYR1), causing plasma membrane depolarization, cytosolic Ca²⁺ influx, and 

activation of phospholipase A2 (PLA2).[2] This releases linolenic acid for octadecanoid 

pathway, yielding JA-Ile, which activates MYC2 transcription factors upregulating proteinase 

inhibitors (PI-I, PI-II, LapA) that inhibit trypsin/chymotrypsin in Spodoptera littoralis guts, 

reducing larval weight gain by 40-60%.[3][6] Indirect defenses include volatile terpenoids 

(e.g., (E)-β-ocimene) attracting parasitoids like Cotesia marginiventris.[7] Against 

necrotrophs, systemin synergizes with ethylene for PR genes, curbing B. cinerea lesion 

expansion by 70% in treated leaves.[5] 

Defense Component Systemin Effect Target Pest/Pathogen Efficacy Data [3][5] 

Direct (PIs) Gut enzyme inhibition S. littoralis 50% reduced feeding 

Indirect (Volatiles) Parasitoid recruitment Noctuids 3x predator attraction 

Antifungal Chitinase/PR upregulation B. cinerea 70% lesion reduction 
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Abiotic Stress Tolerance 
Systemin bolsters salt tolerance in tomatoes by upregulating SOS1 (plasma membrane Na⁺/H⁺ 

antiporter), NHX2 (vacuolar exchanger), and HKT1;2 (Na⁺ unloader), reducing Na⁺ 

accumulation by 35% under 150 mM NaCl.[4] It elevates proline, SOD, CAT antioxidants, and 

aquaporins for drought resilience, mimicking ABA effects without growth penalties.[4][8] For 

Rajasthan's sodic soils (pH 8.5+, EC 4-8 dS/m), picomolar foliar sprays improve fruit yield by 

25% under salinity, via crosstalk with MAPK cascades amplifying stress genes.[4] 

Plant-to-Plant Communication 
Systemin volatiles prime neighboring untreated plants for faster JA responses, enhancing PI 

accumulation by 2-fold upon subsequent attack—a "talking plants" phenomenon via air-borne 

cues.[7][9] This kin recognition boosts community-level resistance in dense tomato fields. 

Practical Applications in Protected Cultivation 
Formulate as 10 nM chitosan nanoparticles for foliar/soil drench (1-5 pmol/plant, weekly), 

integrating with neem IPM: systemin reduces Helicoverpa damage by 55% while boosting Brix 

15%.[3][10] In hydroponics, combine with LED lighting for 20% yield gains under aphid 

pressure. 

Recent Advances 
2025 discovery of antiSys peptide antagonizes SYR1 without signaling, preventing 

autoimmunity.[11] Prosystemin fragments (PS1-70) show broad-spectrum activity, prompting 

commercial prototypes like SysPep® biopesticides.[5] 

Future Perspectives 
CRISPR-Cas9 prosystemin overexpression promises multi-stress cultivars; peptide mimetics 

evade degradation for longer efficacy.[12] AI-optimized delivery via drones targets Rajasthan 

polyhouses, enabling precision natural farming by 2030. 

Conclusion 
Systemin's journey from obscure peptide to agronomic powerhouse underscores peptide 

hormones' untapped potential, fostering resilient, eco-friendly tomato production amid climate 

challenges. 
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