

Phosphorus Dynamics in Relation to Humic Substances

*Saloni R. Solanki, Bharti and Niki R. Rathod

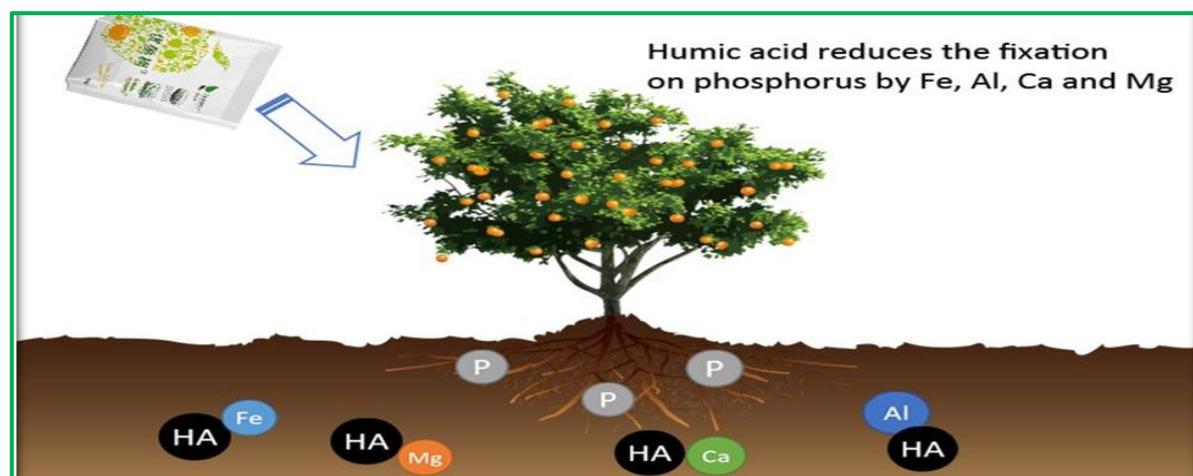
Department of Soil Science and Agricultural Chemistry, N. M. College of Agriculture,
Navsari Agricultural University, Navsari, Gujarat, India

*Corresponding Author's email: salonisolanki855@gmail.com

Phosphorus (P) is an essential nutrient for plant growth, but its availability in soils is often restricted due to fixation, precipitation, and complex transformations among different P pools. Humic substances, which constitute a major fraction of soil organic matter, play a significant role in regulating phosphorus dynamics. This assignment discusses the forms of phosphorus in soil and highlights the mechanisms through which humic substances influence its availability. Humic and fulvic acids reduce phosphorus fixation by chelating metal ions such as iron, aluminum, and calcium, and by competing with phosphate ions for adsorption sites on soil minerals. They also enhance microbial activity and enzymatic processes that promote mineralization of organic phosphorus. In the rhizosphere, humic substances improve root growth and microbial interactions, thereby increasing phosphorus uptake efficiency. Understanding the interaction between phosphorus and humic substances is essential for improving fertilizer use efficiency and developing sustainable soil fertility management practices.

Keywords: Phosphorus dynamics, humic substances, soil organic matter, phosphorus availability, rhizosphere, nutrient management

Introduction

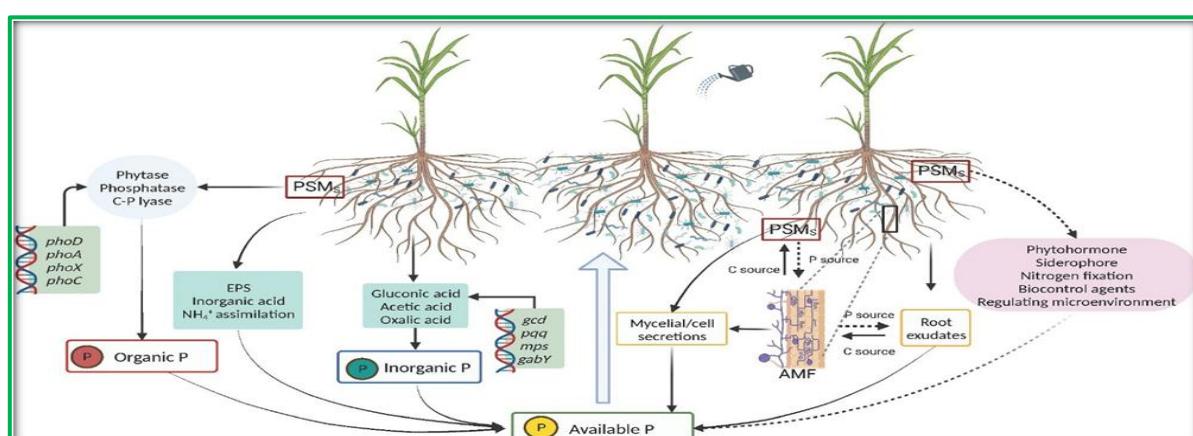

Phosphorus (P) is one of the **most essential nutrients** for plant growth and ecosystem productivity. It plays critical roles in energy transfer (e.g., ATP), nucleic acids, membrane phospholipids, and enzyme regulation. However, **phosphorus dynamics in soils and natural waters are complex** due to its varied chemical forms and strong interactions with minerals and organic matter. One of the most influential organic components affecting phosphorus behavior are **humic substances (HS)** — large, heterogeneous organic molecules formed from the decomposition of plant and microbial residues which dominate soil organic matter and dissolved organic matter in waters.

Humic Substances

Humic substances are complex organic compounds formed during the decomposition of plant and animal residues. They constitute the major fraction of soil organic matter and are broadly classified into:

1. **Humic acid**
2. **Fulvic acid**
3. **Humin**

These substances are rich in functional groups such as carboxyl (-COOH) and phenolic (-OH) groups, which enable them to interact strongly with soil minerals and nutrients, including phosphorus.


Humic acid improves phosphorus availability in soil by preventing its fixation with iron, aluminum, calcium, and magnesium, leading to better nutrient uptake and healthier crop growth.

Forms and Dynamics of Phosphorus in Soil

In soils, phosphorus exists in both **inorganic** and **organic** forms:

- **Inorganic phosphorus (Pi)** includes calcium phosphates in alkaline soils and iron/aluminum phosphates in acidic soils. Pi usually accounts for 35% to 70% of total P in soil (calculation from (Harrison, 1987). Primary P minerals including apatites, strengite, and variscite are very stable, and the release of available P from these minerals by weathering is generally too slow to meet the crop demand though direct application of phosphate rocks (i.e. apatites) has proved relatively efficient for crop growth in acidic soils.
- **Organic phosphorus (Po)** is mainly associated with soil organic matter and microbial biomass. Po generally accounts for 30% to 65% of the total P in soils. Soil Po mainly exists in stabilized forms as inositol phosphates and phosphonates, and active forms as orthophosphate diesters, labile orthophosphate monoesters, and organic polyphosphates (Turner *et al.*, 2002; Condron *et al.*, 2005). The Po can be released through mineralization processes mediated by soil organisms and plant roots in association with phosphatase secretion. These processes are highly influenced by soil moisture, temperature, surface physical-chemical properties, and soil pH and Eh (for redox potential). Po transformation has a great influence on the overall bioavailability of P in soil (Turner *et al.*, 2007). Therefore, the availability of soil P is extremely complex and needs to be systematically evaluated because it is highly associated with P dynamics and transformation among various P pools

Phosphorus dynamics refer to the continuous transformation of P among these different forms through processes such as **adsorption-desorption**, **mineralization-immobilization**, **precipitation**, and **dissolution**.

Role of beneficial soil microorganisms, plant roots, and mycorrhizal fungi in releasing fixed phosphorus and improving its availability to crops.

Interaction Between Phosphorus and Humic Substances

Humic substances significantly influence P behavior in soil through several mechanisms:

1. Reduction of Phosphorus Fixation: In many soils, especially acidic and calcareous soils, phosphorus gets fixed by iron, aluminum, or calcium compounds. Humic substances can form stable complexes with Fe^{3+} , Al^{3+} , and Ca^{2+} ions, thereby **reducing their ability to bind phosphorus**. This results in higher P availability in the soil solution.

2. Competition for Adsorption Sites: Humic and fulvic acids compete with phosphate ions for adsorption sites on soil minerals such as clay and oxides. When humic substances occupy these sites, phosphate ions remain in the soil solution, making them more accessible to plant roots.

3. Mobilization of Organic Phosphorus: A considerable amount of soil phosphorus is present in organic forms. Humic substances stimulate microbial activity and enzyme production (such as phosphatases), enhancing the **mineralization of organic phosphorus** into plant-available inorganic forms.

4. Chelation and Solubilization Effects: Fulvic acids, due to their smaller molecular size and higher solubility, can chelate metal ions and help solubilize fixed phosphorus compounds. This process is particularly important in low-P soils and under stress conditions.

Role in the Rhizosphere

- Humic substances enhance root growth and branching.
- Improved root architecture increases phosphorus uptake efficiency.
- Synergistic interactions with phosphorus-solubilizing microorganisms further improve P availability.

Agricultural Significance

Understanding the interaction between phosphorus and humic substances has practical implications:

- **Improved fertilizer efficiency:** Humic-based amendments can reduce phosphorus losses and improve its use efficiency.
- **Sustainable nutrient management:** Reduced need for high phosphorus fertilizer doses.
- **Enhanced soil health:** Better microbial activity and improved soil structure.

The use of **humic acid-enriched fertilizers** and organic amendments such as compost and farmyard manure can therefore play a crucial role in managing phosphorus dynamics in soils.

Conclusion

Phosphorus availability in soil is not determined solely by fertilizer application but by a complex set of interactions involving soil minerals, microorganisms, and organic matter. Humic substances act as key regulators in phosphorus dynamics by reducing fixation, enhancing solubilization, and promoting biological transformations. Integrating humic substances into soil fertility management strategies can lead to improved phosphorus use efficiency, healthier soils, and more sustainable crop production.

References

1. Condron, L. M., Turner, B. L. and Cade-Menun, B. J. (2005). Chemistry and dynamics of soil organic phosphorus. *Phosphorus: agriculture and the environment*, **46**: 87-121.
2. Harrison, A. F. (1987). Soil organic phosphorus. *A review of world literature* (p. 257pp).
3. Shen JianBo, S. J., Yuan LiXing, Y. L., Zhang JunLing, Z. J., Li HaiGang, L. H., Bai ZhaoHai, B. Z., Chen XinPing, C. X. and Zhang FuSuo, Z. F. (2011). Phosphorus dynamics: from soil to plant.
4. Turner, B. L., Paphazy, M. J., Haygarth, P. M. and Mckelvie, I. D. (2002). Inositol phosphates in the environment, *Philosophical Transactions of the Royal Society of London B Biological Sciences*, **357**(1420): 449–469. <https://doi.org/10.1098/rstb.2001.0837>
5. Turner, B. L., Richardson, A. E. and Mullaney, E. J. (Eds.). (2007). Inositol phosphates: linking agriculture and the environment. CABI.