

Smart Onion Farming: Improving Productivity through Scientific Methods

Atharva Nitin Aher¹, Makrand Krishna Sawant², Atharva Mahesh Khanvilkar²,
*Sanket Subhash Gajare² and Shreya Sarjerao Repe³

¹B.Sc. Agriculture, College of Agriculture, Maladad, MPKV, Rahuri, Maharashtra

²M.Sc. Scholar, Department of Agronomy, GD Goenka University, Gurugram, Haryana

³B.Sc. Agriculture, College of Agriculture Sangulwadi, BSKKV, Dapoli, Maharashtra

*Corresponding Author's email: sanketgajare661@gmail.com

Onion (*Allium cepa* L.) is one of the most widely cultivated and economically important vegetable crops in India as well as across the globe. It plays a significant role in daily diets, farmer livelihoods, and agricultural trade. India is among the leading onion-producing countries, yet productivity levels remain below potential due to challenges such as climate variability, improper crop management, pest and disease incidence, post-harvest losses, and inefficient use of water and nutrients. To overcome these constraints, the concept of smart onion farming has emerged as a practical approach that combines traditional knowledge with modern scientific methods. Smart farming focuses on the use of improved varieties, precise nutrient application, micro-irrigation systems, integrated pest management, and better storage technologies to enhance yield and quality while conserving resources. Recommendations from ICAR and agricultural universities highlight the importance of healthy nursery management, timely transplanting, balanced fertilization, and adoption of drip irrigation with fertigation. The use of digital tools such as weather advisories and mobile-based farm guidance further supports decision-making at the field level. Research findings show that integrating drip irrigation with scientific nutrient management can significantly increase yield while reducing water consumption. Similarly, improved storage and curing practices help minimize post-harvest losses and stabilize farmer income. Smart onion farming therefore offers a sustainable pathway to meet rising demand, improve profitability, and strengthen resilience against climate change. This article explains practical scientific interventions that can help farmers, students, and extension workers achieve higher productivity and sustainable onion production.

Keywords: Onion cultivation; Smart agriculture; Precision nutrient management; Micro-irrigation; Integrated crop management.

Introduction

Onion is an indispensable vegetable crop belonging to the family Amaryllidaceae and is cultivated in diverse agro-climatic regions of India. It is consumed daily in almost every household and is also valued for its medicinal and nutritional properties. India contributes a major share to global onion production, with large cultivation areas in states such as Maharashtra, Karnataka, Madhya Pradesh, Gujarat, and Rajasthan. Despite this large production base, the average productivity of onion in many regions is still lower than what can be achieved through improved management. Several factors are responsible for this gap. Traditional cultivation practices, imbalance in fertilizer use, irregular irrigation, pest and disease outbreaks, and unpredictable weather conditions often reduce yield and bulb quality. In addition, poor handling after harvest leads to substantial storage losses. With increasing

pressure on land and water resources, there is an urgent need to adopt smarter and more efficient farming systems. Smart onion farming is an approach that integrates scientific crop management, improved technologies, and digital support systems. By combining precision agriculture, efficient irrigation, improved varieties, and better post-harvest handling, farmers can achieve higher productivity while reducing input costs and environmental impact.

Scientific Approaches in Smart Onion Farming

1. Climate and Soil Suitability : Onion performs best in mild climatic conditions with temperatures ranging from about 13°C to 25°C. It requires well-drained sandy loam or loam soils rich in organic matter. Proper land preparation along with the addition of farmyard manure improves soil structure, enhances microbial activity, and supports better root growth.

2. Selection of Improved Varieties : Choice of variety is crucial for achieving stable yield. High-yielding and disease-tolerant varieties recommended by research institutions such as Bhima Super, Bhima Red, Bhima Dark Red, Agri-found Light Red, and N-53 perform well under different seasonal conditions and offer better bulb size and storage quality.

3. Scientific Nursery Management and Transplanting : Healthy seedlings form the foundation of a good crop. Seeds should be raised on well-prepared nursery beds and protected from excess moisture and pests. Seedlings are usually ready for transplanting within 40–45 days. Proper spacing (about 15 × 10 cm) ensures adequate aeration and uniform bulb development.

4. Balanced Nutrient Management : Onion is a nutrient-responsive crop. Application of organic manure along with recommended doses of nitrogen, phosphorus, and potassium ensures balanced growth. Integrated nutrient management, including bio-fertilizers and micronutrients, not only improves yield but also maintains long-term soil fertility.

Nutrient	Recommended Dose (kg/ha)	Role in Crop Growth
Nitrogen (N)	100–120	Promotes vegetative growth and bulb development
Phosphorus (P ₂ O ₅)	50–60	Helps root growth and early establishment
Potassium (K ₂ O)	50–60	Improves bulb size, quality, and storage life

5. Efficient Water Management: Since onion has a shallow root system, it requires frequent but light irrigation. Drip irrigation with fertigation is a key component of smart farming, as it delivers water and nutrients directly to the root zone, reduces wastage, and enhances water use efficiency. Proper scheduling based on crop stage prevents both moisture stress and waterlogging.

6. Integrated Weed Management: Weeds compete strongly with onion during early growth stages. A combination of mulching, manual weeding, and selective herbicides helps maintain a weed-free environment and promotes better crop establishment.

7. Integrated Pest and Disease Management: Common pests such as Thrips and onion maggot and diseases like purple blotch and downy mildew can severely affect yield. Smart management involves resistant varieties, field sanitation, biological control agents, and need-based pesticide application, reducing reliance on chemicals.

8. Harvesting and Post-Harvest Care: Harvesting at the correct maturity stage when tops fall naturally is essential for better storage life. Proper curing reduces moisture and strengthens outer scales. Use of improved storage structures helps reduce losses and maintain bulb quality for longer periods.

9. Role of Digital and Smart Technologies: Mobile-based advisory services, weather forecasting tools, and precision agriculture technologies are transforming onion cultivation. These tools help farmers plan irrigation, fertilizer application, and pest control more accurately, saving both time and resources.

Conclusion

Smart onion farming represents a shift from conventional practices to knowledge-based, resource-efficient agriculture. By adopting scientific cultivation methods, improved varieties, precision irrigation, and integrated crop management strategies, farmers can significantly enhance productivity and profitability while conserving natural resources. The support of ICAR institutions, agricultural universities, and digital advisory systems plays a crucial role in spreading these technologies at the grassroots level. As climate change and market uncertainties continue to challenge agriculture, smart onion farming offers a reliable pathway for sustainable production, reduced losses, and improved farmer livelihoods. Encouraging wider adoption of these practices will ensure consistent onion supply, better income stability, and long-term agricultural sustainability.

References

1. Rao, P. V., & Singh, R. (2025). Climate resilient vegetable production technologies. *Indian Farming*, 75(2), 24–29.
2. Meena, R. S., Kumar, D., & Singh, A. (2024). Precision irrigation and fertigation strategies for vegetable crops. *Agricultural Water Management*, 280, 108236.
3. Ministry of Agriculture & Farmers Welfare. (2024). *Horticulture statistics at a glance*. Government of India.
4. ICAR-Directorate of Onion and Garlic Research. (2023). *Improved cultivation practices for onion*. ICAR-DOGR Publication.
5. Singh, S. P., & Yadav, P. (2023). Modern storage technologies for onion. *Journal of Postharvest Technology*, 11(1), 55–62.
6. Kumar, S., Meena, M. L., & Yadav, R. (2022). Integrated nutrient management in onion for higher productivity. *Journal of Plant Nutrition*, 45(12), 1890–1902.
7. Tripathi, A., & Mishra, S. (2022). Sustainable vegetable production using precision agriculture. *Agronomy Journal*, 114(5), 2801–2815.
8. Choudhary, M., Kumar, R., & Singh, B. (2021). Advances in onion production technology. *Indian Journal of Horticulture*, 78(3), 345–352.
9. Sharma, V., & Kaur, J. (2021). Integrated pest management in onion cultivation. *Crop Protection*, 145, 105612.
10. Patel, P., & Shah, K. (2020). Effect of drip irrigation on onion yield and water use efficiency. *International Journal of Agricultural Sciences*, 12(4), 250–255.