

Agrivoltaics: Doubling Income for Indian Farmers

*Mohit Kumar Sharma, S.P Singh, Ankita Jhajhria and Tarun Tomar

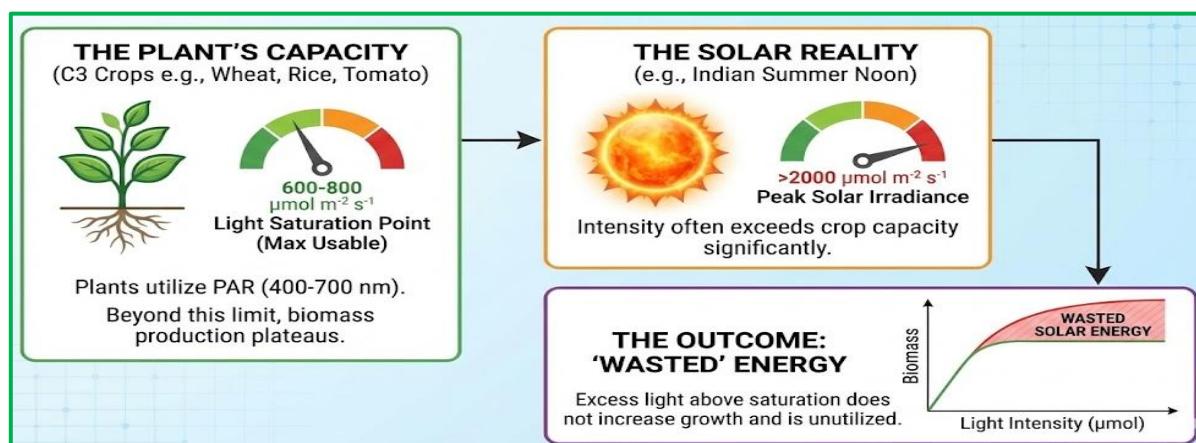
Sardar Vallabhbhai Patel University of Agriculture & Technology, Meerut, U.P., India

*Corresponding Author's email: mohitkumarsharma10122002@gmail.com

As India pursues an ambitious target of 500 GW of renewable energy capacity by 2030, the competition for land resources has intensified. Conventional solar parks, while essential for decarbonization, require significant land area often displacing fertile soil needed for food production. Agrivoltaics (Agri-PV) the strategic co-location of photovoltaics and agriculture offers a scientifically robust solution to this food versus fuel dilemma. This article provides an in-depth examination of the photobiological principles of spectral sharing, the thermodynamics of microclimate buffering, and the potential for maximizing Land Equivalent Ratios (LER) in Indian agro-climatic zones. We explore how Agri-PV transforms the farm from a vulnerable monoculture into a resilient dual-production unit, securing both food and energy sovereignty for the nation.

Introduction

The Indian agricultural sector is currently navigating a precarious trilemma. First, landholdings are shrinking; the average operational holding has declined to less than 1.08 hectares, making subsistence farming increasingly economically unviable. Second, aquifers are depleting at alarming rates, with states like Punjab, Haryana and Rajasthan facing critical groundwater stress. Third, climate change is escalating thermal stress, with heatwaves frequently crossing 45°C causing flower drop and yield reduction in sensitive crops. Simultaneously, the energy sector is undergoing a massive transformation. To meet the 500 GW renewable energy target India requires vast tracts of land. Estimates suggest that ground-mounted solar parks require approximately 4 to 5 acres per Megawatt (MW). If executed conventionally, meeting our solar targets could require diverting millions of acres of land potentially encroaching upon arable tracts. Agrivoltaics challenges this zero-sum game. It posits that land need not be exclusive to one purpose. By elevating solar panels or modifying their spacing, we can create a dual layer economy. The upper layer harvests the high-intensity solar flux for electricity (photons), while the lower layer utilizes the diffuse flux for photosynthesis (biomass). This serves not merely as an energy project, but as a technological intervention for climate-resilient farming. By decoupling farmer income from the uncertainties of the monsoon through the steady sale of electricity, Agrivoltaics offers a pragmatic pathway to doubling farmers' income.


The Photobiological Basis: Optimization

The agronomic viability of Agrivoltaics rests on a fundamental physiological concept: the Light Saturation Point. A prevailing myth in traditional agriculture is that more sun equals more yield. While this is true up to a point, plant physiology dictates that photosynthesis follows an asymptotic curve.

Photosynthetically Active Radiation (PAR) and Saturation

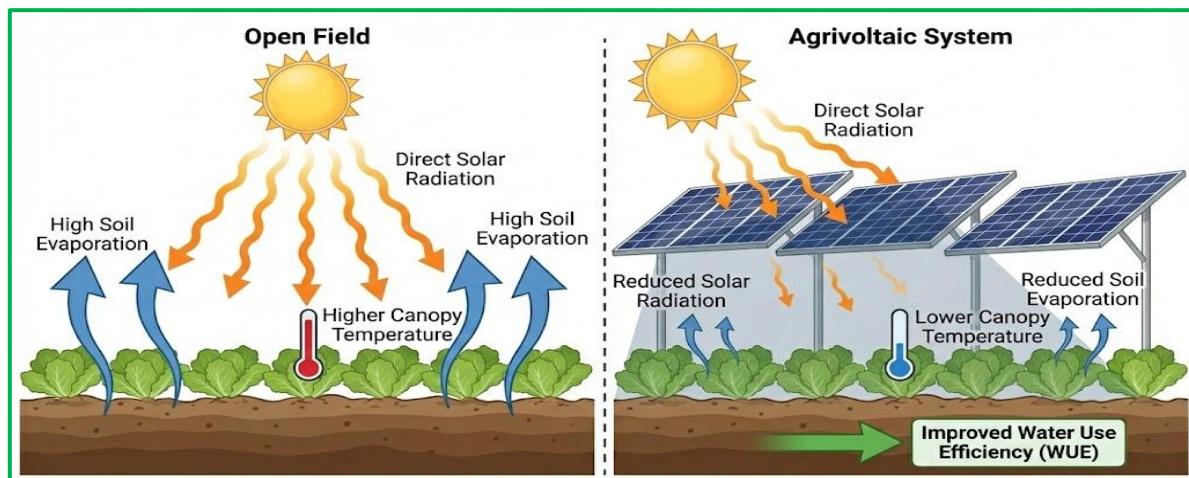
Plants primarily utilize light in the 400-700 nm spectral range, known as Photosynthetically Active Radiation (PAR). However, the photosynthetic machinery of most C3 crops including potato, tomato, wheat, rice, soybean, and most legumes is not designed to handle the peak

solar intensity typical of an Indian summer. In many parts of India, solar irradiance at noon can exceed $2000 \mu\text{mol m}^{-2} \text{s}^{-1}$. However, most C3 crops reach their photosynthetic saturation point at much lower levels typically between 600 to 800 $\mu\text{mol m}^{-2} \text{s}^{-1}$.

Figure 1: The curve demonstrates that beyond a certain intensity (~600-800 μmol), C3 crops do not produce more biomass. The area above the curve represents "wasted" solar energy.

Danger of Excess Light: Photo-inhibition: When solar irradiance exceeds this saturation point, the plant cannot process the excess photons. This "overflow" energy becomes dangerous. It induces a phenomenon called photo-inhibition, where the excess energy generates Reactive Oxygen Species (ROS) within the plant cells. These ROS damage the Photosystem II (PSII) protein complex, which is the engine of photosynthesis. To protect itself, the plant undergoes a stress response: it closes its stomata (leaf pores) to prevent water loss and thermal damage. However, closing stomata blocks the entry of Carbon Dioxide (CO₂). Therefore, paradoxically, too much sun can stop photosynthesis. Agrivoltaic systems are engineered to intercept this excess damaging radiation for power generation. By shading the crops during the peak intensity hours (11:00 AM to 3:00 PM), the panels act as a smart filter. They allow only the optimal, cooler, diffuse light to reach the canopy, keeping the stomata open and the plant in a state of active carbon assimilation for longer periods.

Thermodynamics of the Microclimate


Beyond light management, the most profound impact of Agrivoltaics in arid and semi-arid zones such as Rajasthan, Gujarat, Vidarbha and Rayalaseema is the modification of the farm's microclimate.

Managing Vapour Pressure Deficit

The primary driver of crop water use is the Vapour Pressure Deficit (VPD). Simply put, VPD is the thirst of the atmosphere the difference between how much moisture the air holds and how much it can hold. High air temperatures drive high VPD which forces plants to transpire (sweat) rapidly to cool themselves. The intermittent shade of PV modules creates a buffered microclimate. By blocking direct solar heating of the soil and crop canopy agrivoltaics reduces the local air temperature and wind speed.

Table 1: Comparison of environmental parameters between Open Field and Agrivoltaic System.

Parameter	Open Field (Control)	Agrivoltaic System	Impact / Benefit
Air Temperature (Avg. Summer)	42°C	38.5°C	-3.5°C (Reduces thermal stress on reproductive organs)
Soil Moisture Evaporation	100% (Baseline)	70-85%	15-30% Saving (Creates water security)
Soil Temperature (5cm depth)	48°C	39°C	-9°C (Protects soil microbiome and root zone)
Solar Radiation (PAR)	~1800 $\mu\text{mol m}^{-2} \text{s}^{-1}$	~900 $\mu\text{mol m}^{-2} \text{s}^{-1}$	Optimization (Prevents photo-inhibition)

Figure 2: Diagram illustrating how panels reduce soil evaporation and lower canopy temperature, improving Water Use Efficiency (WUE).

Water Use Efficiency (WUE)

This microclimatic change directly impacts Water Use Efficiency. In the open field, a significant portion of irrigation water is lost to evapotranspiration before the plant can use it. Under panels, the reduced heat load means the soil stays moist for longer. Studies at ICAR-CAZRI (Jodhpur) have shown that crops under Agrivoltaics can maintain turgidity and growth with 20-30% less irrigation water. In a water-stressed future, this virtual water creation is as valuable as the electricity generated.

Engineering Architectures for Indian Farms

Table 2: Primary Agrivoltaic Configurations for India

Architecture Type	Design Description	Pros	Cons	Best Suited For
Elevated Systems (High Clearance)	Panels mounted on structures raised 3-4 meters high. Pillars spaced wide to allow turning radius of machinery.	<ul style="list-style-type: none"> • Full mechanization possible. • Maximizes land usage. • Suitable for tall crops. 	<ul style="list-style-type: none"> • Higher structural cost (more steel). • Difficult to clean panels at height. 	Mechanized farms with high-value or tall crops.
Inter-Space Row Farming	Standard ground-mounted panels with wide "alleys" (6-9 meters) left between rows for cultivation.	<ul style="list-style-type: none"> • Lower installation cost. • Easier maintenance and cleaning. 	<ul style="list-style-type: none"> Lower electricity density (less generation per acre). 	Cereal crops like Wheat and Mustard; farms with standard budget constraints.

Vertical Bifacial Systems

An emerging trend involves mounting bifacial panels vertically, facing East-West, like fences.

- **Agronomic Merit:** At solar noon, when the sun is overhead the panels cast almost no shadow, allowing maximum light for crops when photosynthesis is most active.
- **Grid Merit:** These panels generate peak power during the morning and evening (when sunlight hits the East/West face), aligning with peak grid demand hours (unlike standard solar which peaks at noon).
- **Land Use:** This design occupies the least physical ground space, leaving >90% of the land accessible for machinery and grazing.

Crop Suitability and Selection

Agrivoltaics requires a shift in agronomic planning. Farmers cannot simply plant any crop and expect success. The choice must be based on the crop's physiological response to shade.

Shade Lovers (Sciophytes)

Shade-loving crops such as Ginger, Turmeric, Arrowroot and Elephant Foot Yam naturally evolved in forest understories, possessing low light compensation points that make them susceptible to leaf scorching in direct open sunlight. Agrivoltaic systems replicate this protected environment, effectively replacing the need for expensive artificial shade nets. By providing the filtered light these crops biologically crave, the solar panels reduce thermal stress, often resulting in yield increases of 10-15% compared to conventional open-field cultivation.

Phenotypically Plastic (Shade Tolerant)

Crops such as Tomato, Potato, Spinach, Brinjal and Cluster Bean exhibit phenotypic plasticity, a mechanism that allows them to adapt to partial shade by increasing their Specific Leaf Area (SLA). Under these conditions, the plants modify their morphology to develop thinner, wider leaves with higher chlorophyll concentrations to efficiently capture diffuse light. As a result, they typically maintain yields comparable to open-field cultivation while producing higher quality, succulent vegetables that are significantly less prone to sunscald.

Shade Sensitive (Cereals)

Moderately sensitive crops such as Wheat, Rice, and Mustard require a strategy focused on Yield Management. While dense shading can result in marginal yield reductions of 5-15%, the overall economic model remains robust. The financial loss associated with a minor drop in crop yield is rendered negligible when weighed against the substantial, consistent revenue generated from the sale of electricity.

Table 3: Crop Suitability Matrix

Category	Physiological Response	Recommended Crops (Rabi/Kharif)	Panel Density
Shade Loving	Yield Increase Naturally adapted to low light.	Ginger, Turmeric, Elephant Foot Yam, Aloe Vera	High (>70%)
Shade Tolerant	Yield Neutral Leaves expand (high SLA) to capture light.	Potato, Tomato, Spinach, Brinjal, Cluster Bean (Guar)	Medium (40-50%)
Shade Sensitive	Yield Managed Requires wider spacing.	Wheat, Chickpea (Gram), Mustard, Rice	Low (<30%)
Heliophilic (Sun Loving)	Yield Reduction High light saturation point.	Maize (Corn), Sorghum (Jowar), Pearl Millet	Not Recommended

Policy Integration: PM-KUSUM

The technical feasibility of Agrivoltaics is supported by the regulatory framework of the Pradhan Mantri Kisan Urja Suraksha Evam Utthaan Mahabhiyan (PM-KUSUM). This scheme is the linchpin for financial viability.

- Component A:** Supports farmers in setting up decentralized renewable power plants (up to 2 MW) on barren or fallow land. Agrivoltaics expands this definition, allowing installation on fertile land without halting cultivation.
- Component C (Feeder Level Solarization):** This is critical. It supports the solarization of agricultural pumps. Under this component, farmers can become Prosumers. They generate power for their own irrigation needs and sell the surplus to the DISCOM (Distribution Company) at a pre-determined tariff.

Financial Security: Agriculture is inherently risky, prone to pest attacks, unseasonal rains and market price fluctuations. Solar generation is deterministic irradiance data allows us to predict output years in advance. The monthly income from electricity acts as a financial buffer, effectively an insurance policy. Even if the crop fails entirely, the solar harvest ensures the farmer remains solvent.

Operational Challenges and Solutions

Soiling & Cleaning

Dust accumulation poses a critical challenge in Indian conditions, capable of reducing PV efficiency by 15-25%. Relying on groundwater for cleaning is unsustainable, as it accelerates aquifer depletion and risks inducing soil salinization. The optimal solution lies in Integrated rainwater harvesting where agrivoltaics structures are fitted with gutters to capture monsoon runoff in underground tanks. This stored mineral-free water is ideal for maintaining panel efficiency, while the cleaning runoff is subsequently repurposed to irrigate crops, effectively creating a sustainable, closed-loop water system.

Soil Health and Compaction

The installation of heavy steel infrastructure involves pile driving and the extensive movement of machinery, risking deep soil compaction that inhibits root penetration for future crops. To mitigate this, protocols must mandate Minimum Tillage and Controlled Traffic Farming techniques, where heavy machinery is strictly restricted to permanent service lanes (alleys) to ensure the active crop beds remain uncompacted.

Socio-Economic Acceptance

To address the pervasive fear among smallholder farmers that agrivoltaics may serve as a pretext for corporate land grabbing, business models must remain strictly farmer centric. As advocated by schemes like PM-KUSUM, implementation frameworks should ensure farmers retain land ownership and receive a recurring share of the revenue, avoiding pure lease models that risk displacement. In this transition, extension services and Krishi Vigyan Kendras (KVKs) play a vital role in building trust by demonstrating on the ground that agricultural operations can continue unabated beneath solar infrastructure.

Conclusion

Agrivoltaics represents a paradigm shift in land management. It requires us to stop viewing the solar panel as an industrial intruder and start viewing it as an agronomic tool like a greenhouse, a drip irrigation pipe or a shade net. For India, Agrivoltaics addresses the urgent need for renewable energy without compromising food security. It offers a pathway where the Indian farmer rises as both the Annadata (provider of food) and the Urjadata (provider of energy). By optimizing the light spectrum, buffering the microclimate, and stabilizing farm incomes, Agrivoltaics turns the threat of climate change excess heat and radiation into an asset. As research matures and policy deepens, this symbiosis of sun and soil will be the cornerstone of a sustainable, resilient Indian agricultural future.